A generalization of a unit index of Greither
Communications in Mathematics, Tome 6 (1998) no. 1, pp. 149-154 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11R20, 11R27
@article{COMIM_1998_6_1_a17,
     author = {Ku\v{c}era, Radan},
     title = {A generalization of a unit index of {Greither}},
     journal = {Communications in Mathematics},
     pages = {149--154},
     year = {1998},
     volume = {6},
     number = {1},
     mrnumber = {1822525},
     zbl = {1024.11070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a17/}
}
TY  - JOUR
AU  - Kučera, Radan
TI  - A generalization of a unit index of Greither
JO  - Communications in Mathematics
PY  - 1998
SP  - 149
EP  - 154
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a17/
LA  - en
ID  - COMIM_1998_6_1_a17
ER  - 
%0 Journal Article
%A Kučera, Radan
%T A generalization of a unit index of Greither
%J Communications in Mathematics
%D 1998
%P 149-154
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a17/
%G en
%F COMIM_1998_6_1_a17
Kučera, Radan. A generalization of a unit index of Greither. Communications in Mathematics, Tome 6 (1998) no. 1, pp. 149-154. http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a17/

[1] C. Greither: Improving Ramachandra's and Levesque's unit index. to appear in the Proceedings of the Fifth Conference of the Canadian Number Theory Association (1996), Ottawa.

[2] R. Kučera: On the Stickelberger ideal and circular units of a compositum of quadratic fields. Number Theory 56 (1996), 139-166. | DOI | MR

[3] C. Levesque: On improving Ramachandra's unit index. Number Theory, 1st Conference of the Canadian Number Theory Association, 1990, pp. 325-338. | MR | Zbl

[4] K. Ramachandra: On the units of cyclotomic fields. Acta Arith XII, 1996, pp. 165-173. | MR

[5] W. Sinnott: On the Stickelberger ideal and the circular units of an abelian field. Inv. Math 62, 1980, pp. 181-234. | DOI | MR | Zbl

[6] L. C. Washington: Introduction to cyclotomic fields. (1982), Springer-Verlag, New York. | MR | Zbl