Definability of arithmetical operations from binary quadratic forms
Communications in Mathematics, Tome 6 (1998) no. 1, pp. 135-144 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03B10, 03B25, 11C99
@article{COMIM_1998_6_1_a15,
     author = {Korec, Ivan},
     title = {Definability of arithmetical operations from binary quadratic forms},
     journal = {Communications in Mathematics},
     pages = {135--144},
     year = {1998},
     volume = {6},
     number = {1},
     mrnumber = {1822523},
     zbl = {1024.03011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a15/}
}
TY  - JOUR
AU  - Korec, Ivan
TI  - Definability of arithmetical operations from binary quadratic forms
JO  - Communications in Mathematics
PY  - 1998
SP  - 135
EP  - 144
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a15/
LA  - en
ID  - COMIM_1998_6_1_a15
ER  - 
%0 Journal Article
%A Korec, Ivan
%T Definability of arithmetical operations from binary quadratic forms
%J Communications in Mathematics
%D 1998
%P 135-144
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a15/
%G en
%F COMIM_1998_6_1_a15
Korec, Ivan. Definability of arithmetical operations from binary quadratic forms. Communications in Mathematics, Tome 6 (1998) no. 1, pp. 135-144. http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a15/

[Ce96] P. Cegielski: Definability, decidability and complexity. Annals of Mathematics on Artificial Intelligence 16 (1996), 311-341. | DOI | MR

[Gr91] S. Grigorieff: Decidability et complexite des theories logiques. Logique et Informatique: Une Introduction (B. Courcelle - M. Nivat, eds.), I.N.R.I.A., Rocquancourt - France, 1991, pp. 7-97. | MR

[Ko96] I. Korec: List of structures strongest with respect to the first order definability. Preprint 33/1996 of Math. Institute SAV Bratislava, 32pp, latest revision: November 1997, 34pp. | MR

[Ko96a] I. Korec: Definability of addition from multiplication and neighborhood relation and some related results. Proceedings of the Conference on Analytic and Elementary Number Theory, Vienna, July 18-20, 1996 (W. G. Nowak and J. Schoissengeier, eds.), Universitat fur Bodenkultur and Universitat Wien, 1996, pp. 137-148, also Preprint 23/1996 of Math. Institute SAV Bratislava.

[Ko97] I. Korec: Arithmetical operations strongest with respect to the first order definability. Preprint 12/1997 of Math. Institute SAV Bratislava, 12pp.

[Ro49] J. Robinson: Definability and decision problems in arithmetic. Journal of Symbolic Logic 14 (1949), 98-114. | DOI | MR | Zbl