The Artin exponent of finite groups
Communications in Mathematics, Tome 5 (1997) no. 1, pp. 71-79 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 19A22, 20C15, 20D15
@article{COMIM_1997_5_1_a7,
     author = {Nwabueze, Kenneth K.},
     title = {The {Artin} exponent of finite groups},
     journal = {Communications in Mathematics},
     pages = {71--79},
     year = {1997},
     volume = {5},
     number = {1},
     mrnumber = {1828553},
     zbl = {0931.20010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a7/}
}
TY  - JOUR
AU  - Nwabueze, Kenneth K.
TI  - The Artin exponent of finite groups
JO  - Communications in Mathematics
PY  - 1997
SP  - 71
EP  - 79
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a7/
LA  - en
ID  - COMIM_1997_5_1_a7
ER  - 
%0 Journal Article
%A Nwabueze, Kenneth K.
%T The Artin exponent of finite groups
%J Communications in Mathematics
%D 1997
%P 71-79
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a7/
%G en
%F COMIM_1997_5_1_a7
Nwabueze, Kenneth K. The Artin exponent of finite groups. Communications in Mathematics, Tome 5 (1997) no. 1, pp. 71-79. http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a7/

[1] A. DRESS: A characterization of solvable groups. Math. Z. 110, (1960), pp. 213-217. | DOI | MR

[2] A. DRESS: Congгuence relations characterizing the representation ring of the Symmetric group. J. Algebra 2, (1986), pp 350 - 363. | DOI | MR

[3] A. DRESS: Notes on the theory of representation of finite groups. Lecture Notes, Bielefeld, 1971. | MR

[4] A. DRESS C. SIEBENEICHER T. YOSHIDA: An application of Burnside rings in elementary finite group theory. J. Algebra 1, (1992), pp 27 - 44. | MR

[5] T.Y. LAM: Artin exponent for finite groups. J. Algebra 9, (1968), pp. 94- 119. | DOI | MR

[6] K.K. NWABUEZE: Certain applications of the Burnside ring and its ghost ring in finite group theory I. Bull. Soc. Math. Belgium (to appear).

[7] T. TOM-DIECK: Transformation groups and representation theory. Lecture Notes in Math. 444? Springer-Verlag 1975. | MR

[8] R. SWAN: Induced representation and projective modules. Ann. Math 71, (1960), pp 552 - 578. | DOI | MR

[9] H. ZASSENHAUS: Theory of Groups. Chelsea, NewYork, 1958. | MR | Zbl