Balanced projective dimension of modules
Communications in Mathematics, Tome 5 (1997) no. 1, pp. 39-51 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 13D05, 13F30, 13G05
@article{COMIM_1997_5_1_a3,
     author = {Dimitri\'c, R. M.},
     title = {Balanced projective dimension of modules},
     journal = {Communications in Mathematics},
     pages = {39--51},
     year = {1997},
     volume = {5},
     number = {1},
     mrnumber = {1828549},
     zbl = {0929.13006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a3/}
}
TY  - JOUR
AU  - Dimitrić, R. M.
TI  - Balanced projective dimension of modules
JO  - Communications in Mathematics
PY  - 1997
SP  - 39
EP  - 51
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a3/
LA  - en
ID  - COMIM_1997_5_1_a3
ER  - 
%0 Journal Article
%A Dimitrić, R. M.
%T Balanced projective dimension of modules
%J Communications in Mathematics
%D 1997
%P 39-51
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a3/
%G en
%F COMIM_1997_5_1_a3
Dimitrić, R. M. Balanced projective dimension of modules. Communications in Mathematics, Tome 5 (1997) no. 1, pp. 39-51. http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a3/

[1] Butler M.C.R., Horrocks G.: Classes of extensions and resolutions. Philos. Trans. Roy Soc. London Ser. A 254, (1961),no. 1039, 155-222. | MR | Zbl

[2] Dimitric Radoslav M.: Dualities between $Hom_R$ and $\otimes_R$ and their applications. Kobe J. Math., 9, (1992), no. 1, 43-61. | MR

[3] Dimitric Radoslav: On the notions of characteristic and type for moduls and their applications. Acta Math. Info. Univ. Ostraviensis 1, (1993), 13-25. | MR

[4] Dimitric Radoslav, Fuchs László: On torsion-free modules over valuation domains. Publicationes Math. Debrecen 34, (1987), 91-97. | MR

[5] Fuchs L., Hill P.: The balanced-projective dimension of abelian p-groups. Transactions Amer. Math. Soc. 293, (1986), no. 1, 99-112. | MR | Zbl

[6] Mac Lane Saunders: Homology. Springer Verlag, Berlin, Gottingen, Heidelberg, (1963). | MR

[7] Simmons James: Cyclic purity: A generalization of purity to modules. Tulane University, New Orleans, (1983). | MR