Über das Lokalisierungsprinzip bei mehrdimensionalen Shannonschen und konjugierten Shannonschen Abtastreihen
Communications in Mathematics, Tome 5 (1997) no. 1, pp. 27-37
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 41A05, 42A38, 42A50, 42C40, 94A12, 94A20
@article{COMIM_1997_5_1_a2,
     author = {Boche, Holger},
     title = {\"Uber das {Lokalisierungsprinzip} bei mehrdimensionalen {Shannonschen} und konjugierten {Shannonschen} {Abtastreihen}},
     journal = {Communications in Mathematics},
     pages = {27--37},
     year = {1997},
     volume = {5},
     number = {1},
     mrnumber = {1828548},
     zbl = {0931.42025},
     language = {de},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a2/}
}
TY  - JOUR
AU  - Boche, Holger
TI  - Über das Lokalisierungsprinzip bei mehrdimensionalen Shannonschen und konjugierten Shannonschen Abtastreihen
JO  - Communications in Mathematics
PY  - 1997
SP  - 27
EP  - 37
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a2/
LA  - de
ID  - COMIM_1997_5_1_a2
ER  - 
%0 Journal Article
%A Boche, Holger
%T Über das Lokalisierungsprinzip bei mehrdimensionalen Shannonschen und konjugierten Shannonschen Abtastreihen
%J Communications in Mathematics
%D 1997
%P 27-37
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a2/
%G de
%F COMIM_1997_5_1_a2
Boche, Holger. Über das Lokalisierungsprinzip bei mehrdimensionalen Shannonschen und konjugierten Shannonschen Abtastreihen. Communications in Mathematics, Tome 5 (1997) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a2/

[1] H. Boche: Konvergenzverhalten der konjugierten Shannonschen Abtastreihe. accepted in Acta Mathematica et Informatica Universitatis Ostraviensis. | Zbl

[2] P. Butzer: HASH(0x3011b98). Personliche Mitteilung, RWTH-Aachen, 1995. | Zbl

[3] P. Butzer W. Splettstößer R. Stens: The Sampling Theorem and Linear Prediction in Signal Analysis. Jber. Deutsch. Math.-Vereinigung 90, (1988), S. 1-70. | MR

[4] P. Butzer R. Stens: Sampling Theory for not necessarily band-limited Functions. SIAM Review, March 1992, Vol. 34, No. 1. | MR

[5] P. Butzer: A survey of Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition, 3 (1983), p. 185-212. | MR

[6] D. P. Dryanow: Equiconvergence and equiapproximation for Entire Functions. Constructive Theory of Functions, Varna 91, Sofia 1992, p. 123-136.

[7] D. P. Dryanow: On the convergence and saturation problem of a sequence of discrete linear Operators of exponential type in $L_p(-\infty, \infty)$ Spaces. Acta Math. Hung. 49 (1-2) (1987), p. 103-127. | MR

[8] A. Jerri: The Shannon sampling theorem - its varios extensions and applications: a tutorial review. Proc. IEEE 65 (1977), 1565-1596.

[9] R. J. Marks: Introduction to Shannon Sampling and Interpolation Theory. Sringer Texts in Electrical Engineering, Springer Verlag New York, 1991 | MR | Zbl

[10] R. J. Marks ed: Advanced Topics in Shannon Sampling and Interpolation Theory. Sringer Texts in Electrical Engineering, Springer Verlag New York, 1993. | MR | Zbl

[11] S. Ries, R. L. Stens: A Localization Principle for the Approximation by Sampling Series. in Proc. Intern. Conf. Theory of Approximation of Functions, Izdat. Nauka, Moscow, 1987, pp. 507-509.

[12] R. L. Stens: Approximation to Duration-Limited Functions by Sampling Sums. Signal Processing 2 (1980), pp. 173-176. | DOI | MR

[13] R. L. Stens: A Unified Apprvach to Sampling Theorems for Derivatives and Hilbert Transforms. Signal Processing 5 (1983), pp. 139-151. | DOI | MR

[14] R. L. Stens: Approximation of Functions by Whittaker's Cardinal Series. International Series of Numerical Mathematics, Vol. 71, 1984, pp. 137-149. | MR | Zbl

[15] R. L. Stens: HASH(0x3028860). Personliche Mitteilung, RWTH-Aachen, 1995. | Zbl