@article{COMIM_1997_5_1_a1,
author = {Boche, Holger},
title = {Konvergenzverhalten der konjugierten {Shannonschen} {Abtastreihe}},
journal = {Communications in Mathematics},
pages = {13--26},
year = {1997},
volume = {5},
number = {1},
mrnumber = {1828547},
zbl = {0931.42024},
language = {de},
url = {http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a1/}
}
Boche, Holger. Konvergenzverhalten der konjugierten Shannonschen Abtastreihe. Communications in Mathematics, Tome 5 (1997) no. 1, pp. 13-26. http://geodesic.mathdoc.fr/item/COMIM_1997_5_1_a1/
[1] N. Bary: A treatise on Trigonometrie Series Vol. 2. Pergamon Press LTD, Oxford 1964.
[2] P. Butzer R. Nessel: Fourier Analysis and Approximation. Birkhäuser Verlag, New York, 1971. | MR
[3] P. Butzer W. Splettstößer R. Stens: The Sampling Theorem and Linear Prediction in Signal Analysis. Jber. Deutsch. Math.-Vereinigung 90, (1988), S. 1-70. | MR
[4] P. Butzer R. Stens: Sampling Theory for not necessarily band-limited Functions. SIAM Review, March 1992, Vol. 34, No. 1. | MR
[5] P. Butzer W. Splettstösser: Approximation und Interpolation durch verallgemeinerte Abtastsummen. Forschungsbericht No. 2515 des Landes Nordrhein-Westfalen, Köln-Opladen, 1977.
[6] P. Butzer: A survey of Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition, 3 (1983), p. 185-212. | MR
[7] L. Carleson: Convergence and growth of partial sums of Fourier series. Acta Math. 116, (1966), S. 135-157. | DOI | MR | Zbl
[8] J. Churkin, C Jakowlew G. Wunsch: Theorie und Anwendung der Signalabtastung. Verlag Technik Berlin, Berlin 1966.
[9] A. Jerri: The Shannon sampling theorem - its varios extensions and applications: a tutorial review. Proc. IEEE 65 (1977), 1565-1596.
[10] R. J. Marks: Introduction to Shannon Sampling and Interpolation Theory. Sringer Texts in Electrical Engineering, Springer Verlag New York, 1991. | MR | Zbl
[11] R. J. Marks ed: Advanced Topics in Shannon Sampling and Interpolation Theory. Sringer Texts in Electrical Engineering, Springer Verlag New York, 1993. | MR | Zbl
[12] H. Triebel: Theory of Function Spaces II. Monographs in Mathematics, Birkhauser Verlag, Basel, 1992. | MR | Zbl