On the Hilbert-Ackermann theorem in fuzzy logic
Communications in Mathematics, Tome 4 (1996) no. 1, pp. 57-74 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03B50, 03B52
@article{COMIM_1996_4_1_a5,
     author = {Nov\'ak, Vil\'em},
     title = {On the {Hilbert-Ackermann} theorem in fuzzy logic},
     journal = {Communications in Mathematics},
     pages = {57--74},
     year = {1996},
     volume = {4},
     number = {1},
     mrnumber = {1446784},
     zbl = {0870.03008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1996_4_1_a5/}
}
TY  - JOUR
AU  - Novák, Vilém
TI  - On the Hilbert-Ackermann theorem in fuzzy logic
JO  - Communications in Mathematics
PY  - 1996
SP  - 57
EP  - 74
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1996_4_1_a5/
LA  - en
ID  - COMIM_1996_4_1_a5
ER  - 
%0 Journal Article
%A Novák, Vilém
%T On the Hilbert-Ackermann theorem in fuzzy logic
%J Communications in Mathematics
%D 1996
%P 57-74
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1996_4_1_a5/
%G en
%F COMIM_1996_4_1_a5
Novák, Vilém. On the Hilbert-Ackermann theorem in fuzzy logic. Communications in Mathematics, Tome 4 (1996) no. 1, pp. 57-74. http://geodesic.mathdoc.fr/item/COMIM_1996_4_1_a5/

[1] Chang C. C., H. J. Keisler: Model Theory. North-Holland, Amsterdam 1973. | Zbl

[2] Goguen J. A.: The logic of inexact concepts. Synthese 19 (1968-69), 325-373. | DOI

[3] Gottwald S.: Mehrwertige Logik. Akademie-Verlag, Berlin 1989. | MR | Zbl

[4] Hajek P.: Fuzzy logic and arithmetical hierarchy. Fuzzy Sets and Systems 73 (1995), 359-363. | DOI | MR | Zbl

[5] Lehmke S.: On Resolution-Based Theorem Proving in Propositional Fuzzy Logic with 'Bold' Connectives. Diploma thesis. University of Dortmund, Dortmund 1995.

[6] Novák V.: Fuzzy Sets and Their Applications. Adam-Hilger, Bristol, 1989. | MR

[7a] Novák V.: On the Syntactico-Semantical Completeness of First-Order Fuzzy Logic. Part I - Syntactical Aspects. Kybernetika 26 (1990), 47-66. | MR

[7] Novák V.: On the Syntactico-Semantical Completeness of First-Order Fuzzy Logic. Part II - Main Results. Kybernetika 26 (1990), 134-154. | MR

[8] Novák V.: The Alternative Mathematical Model of Linguistic Semantics and Pragmatics. Plenum, New York, 1992. | MR

[9] Novák V.: On the logical basis of approximate reasoning. in V. Novák, J. Ramík, M. Mareš, M. Černý and J. Nekola, Eds.: Fuzzy Approach to Reasoning and Decision Making. Academia, Prague and Kluwer, Dordrecht 1992. | MR

[10] Novák V.: Fuzzy Logic As a Basis of Approximate Reasoning. In: Zadeh, L. A., Kacprzyk, J. Fuzzy Logic for the Management of Uncertainty. J. Wiley & Sons, New York 1992.

[11] Novák V.: Towards Formalized Integrated Theory of Fuzzy Logic. In: Bien Z., and K. Min (eds.), Fuzzy Logic and Its Applications to Engineering, Information Sciences, and Intelligent Systems, Kluwer, Dordrecht 1995, 353-363. | MR

[12] Novák V.: Ultraproduct Theorem and Recursive properties of Fuzzy Logic. In: Hohle U. and E. P. Klement (eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets. A Handbook of the Mathematical Foundations of Fuzzy Set Theory, Kluwer, Dordrecht 1995, 341-370. | MR

[13] Novák V.: Fuzzy Logic Revisited. Proc. Int. Conference EUFIT'94, Verlag der Augustinus Buchhandlung, Aachen 1994, 496-499.

[14] Novák V.: A New Proof of Completeness of Fuzzy Logic and Some Conclusions for Approximate Reasoning. Proc. Int. Conference FUZZ-IEEE/IFES'95, Yokohama 1995, 1461-1468.

[15] Novák V.: Paradigm, Formal Properties and Limits of Fuzzy Logic. Int. J. of General Systems 24 (1996), 377 405. | DOI

[16] Pavelka J.: On fuzzy logic I, II, III. Zeit. Math. Logic. Grundl. Math. 25 (1979), 45-52; 119-134; 447-464. | DOI | MR

[17] Rasiowa H., R. Sikorski: The Mathematics of Metamathematics. PWN, Warszawa 1963. | MR | Zbl

[18] Rose A., J. B. Rosser: Fragments of many-valued statement calculi. Trans. A.M.S. 87 (1958), 1-53. | DOI | MR | Zbl

[19] Schwartz D. G.: Axioms for a Theory of Semantic Equivalence. Fuzzy Sets and Systems 21 (1987), 319-349. | DOI | MR | Zbl

[20] Shoenfield J. R.: Mathematical Logic. Addison-Wesley, New York 1967. | MR | Zbl