Something about Lindemann's theorem
Communications in Mathematics, Tome 4 (1996) no. 1, pp. 23-27 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11J81, 11J85
@article{COMIM_1996_4_1_a1,
     author = {Han\v{c}l, Jaroslav},
     title = {Something about {Lindemann's} theorem},
     journal = {Communications in Mathematics},
     pages = {23--27},
     year = {1996},
     volume = {4},
     number = {1},
     mrnumber = {1446780},
     zbl = {0870.11041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1996_4_1_a1/}
}
TY  - JOUR
AU  - Hančl, Jaroslav
TI  - Something about Lindemann's theorem
JO  - Communications in Mathematics
PY  - 1996
SP  - 23
EP  - 27
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1996_4_1_a1/
LA  - en
ID  - COMIM_1996_4_1_a1
ER  - 
%0 Journal Article
%A Hančl, Jaroslav
%T Something about Lindemann's theorem
%J Communications in Mathematics
%D 1996
%P 23-27
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1996_4_1_a1/
%G en
%F COMIM_1996_4_1_a1
Hančl, Jaroslav. Something about Lindemann's theorem. Communications in Mathematics, Tome 4 (1996) no. 1, pp. 23-27. http://geodesic.mathdoc.fr/item/COMIM_1996_4_1_a1/

[1] Aigner M.: Combinatorial Theory. Springer (Moscow, 1982), 1979. | MR

[2] Feldman N. I.: Hilberťs Seventh Problem. Moscow (гussian), 1982. | MR

[3] Hančl Ј.: Two Proofs of Transcendency of $\pi$ and $e$. Czech. Math. Ј. 35 (110) (1985), 543-549. | MR

[4] Hermite C.: Sur la fonction exponentielle. Compt. Rend. Acad. Sci., Paris 77 (1873), 18-24, 74-79, 226-233, 285-293 (Euvres 3, 150-181).

[5] Lindemann F.: Über die Zahl $\pi$. Math. Ann. 20 (1882), 213-225. | MR

[6] Shidlovskii A. B.: Transcendental Numbers. Walter de Gruyter, 1989. | MR | Zbl