Something about Lindemann's theorem
Communications in Mathematics, Tome 4 (1996) no. 1, pp. 23-27
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{COMIM_1996_4_1_a1,
author = {Han\v{c}l, Jaroslav},
title = {Something about {Lindemann's} theorem},
journal = {Communications in Mathematics},
pages = {23--27},
year = {1996},
volume = {4},
number = {1},
mrnumber = {1446780},
zbl = {0870.11041},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_1996_4_1_a1/}
}
Hančl, Jaroslav. Something about Lindemann's theorem. Communications in Mathematics, Tome 4 (1996) no. 1, pp. 23-27. http://geodesic.mathdoc.fr/item/COMIM_1996_4_1_a1/
[1] Aigner M.: Combinatorial Theory. Springer (Moscow, 1982), 1979. | MR
[2] Feldman N. I.: Hilberťs Seventh Problem. Moscow (гussian), 1982. | MR
[3] Hančl Ј.: Two Proofs of Transcendency of $\pi$ and $e$. Czech. Math. Ј. 35 (110) (1985), 543-549. | MR
[4] Hermite C.: Sur la fonction exponentielle. Compt. Rend. Acad. Sci., Paris 77 (1873), 18-24, 74-79, 226-233, 285-293 (Euvres 3, 150-181).
[5] Lindemann F.: Über die Zahl $\pi$. Math. Ann. 20 (1882), 213-225. | MR
[6] Shidlovskii A. B.: Transcendental Numbers. Walter de Gruyter, 1989. | MR | Zbl