@article{COMIM_1995_3_1_a3,
author = {Jakubec, Stanislav},
title = {Criterion for 3 to be eleventh power},
journal = {Communications in Mathematics},
pages = {37--43},
year = {1995},
volume = {3},
number = {1},
mrnumber = {1474064},
zbl = {0876.11002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_1995_3_1_a3/}
}
Jakubec, Stanislav. Criterion for 3 to be eleventh power. Communications in Mathematics, Tome 3 (1995) no. 1, pp. 37-43. http://geodesic.mathdoc.fr/item/COMIM_1995_3_1_a3/
[1] Alderson H. P.: On the septimic character of 2 and 3. Proc. Camb. Phil. Soc. 74 (1973), 421-433. | MR | Zbl
[2] Ankeny N. C.: Criterion for rth power residuacity. Pacific J. Math. 10 (1960), 1115-1124. | DOI | MR | Zbl
[3] Jacobi C. G. J.: De residuis cubicis commentatio numerosa. J. für Reine und Angew. Math. 2 (1827), 66-69.
[4] Jakubec S.: Note on the Jacobi sum. Seminaire de theorie des nombres de Bordeaux to appear (1994).
[5] Lehmer E.: The quintic character of 2 and 3. Duke Math. J. 18 (1951), 11-18. | DOI | MR | Zbl
[6] Leonard P. A., Williams K. S.: The septic character of 2, 3, 5 and 7. Pacific J. Math. 52 (1974), 143-147. | MR
[7] Muskat J. B.: On the solvability of $x^c \equiv e (\bmod p). Pacific J. Math. 14 (1964), 257-260. | MR | Zbl
[8] Parnami J. C., Agrawal M. K., Rajwade A.R.: Criterion for 2 to be l-th power. Acta Arith. 43 (1984), 361-364. | MR
[9] Williams K. S.: Explicit criteria for quintic residuacity. Math. Comp. 30 (1974), 1-6. | MR