Fast growing sequences of partial denominators
Communications in Mathematics, Tome 2 (1994) no. 1, pp. 81-84
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{COMIM_1994_2_1_a7,
author = {Baxa, Christoph},
title = {Fast growing sequences of partial denominators},
journal = {Communications in Mathematics},
pages = {81--84},
year = {1994},
volume = {2},
number = {1},
mrnumber = {1309066},
zbl = {0856.11034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_1994_2_1_a7/}
}
Baxa, Christoph. Fast growing sequences of partial denominators. Communications in Mathematics, Tome 2 (1994) no. 1, pp. 81-84. http://geodesic.mathdoc.fr/item/COMIM_1994_2_1_a7/
[1] Baker A.: On Mahler's classification of transcendental numbers. Acta Math. 111 (1964), 97-120. | DOI | MR | Zbl
[2] Bombieri E., van der Poorten A. J.: Some quantitive results related to Roth's theorem. J. Austral Math. Soc. (Ser. A) 45 (1988), 233-248. | DOI | MR
[3] Davenport H., Roth K. F.: Rational approximations to algebraic numbers. Mathematika 2 (1955), 160-167. | DOI | MR | Zbl
[4] Davison J. L., Shallit J. O.: Continued fractions for some alternating series. Monatsh. Math. 111 (1991), 119-126. | DOI | MR | Zbl
[5] Mueller J., Schmidt W. M.: On the number of good rational approximations to algebraic numbers. Proc. Amer. Math. Soc. 106 (1989), 859-866. | DOI | MR | Zbl