On the control net of certain multivariate spline functions
Communications in Mathematics, Tome 2 (1994) no. 1, pp. 113-125 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 41A15, 41A63, 65D07
@article{COMIM_1994_2_1_a10,
     author = {Wenz, Hans-J\"org},
     title = {On the control net of certain multivariate spline functions},
     journal = {Communications in Mathematics},
     pages = {113--125},
     year = {1994},
     volume = {2},
     number = {1},
     mrnumber = {1309069},
     zbl = {0848.41008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1994_2_1_a10/}
}
TY  - JOUR
AU  - Wenz, Hans-Jörg
TI  - On the control net of certain multivariate spline functions
JO  - Communications in Mathematics
PY  - 1994
SP  - 113
EP  - 125
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1994_2_1_a10/
LA  - en
ID  - COMIM_1994_2_1_a10
ER  - 
%0 Journal Article
%A Wenz, Hans-Jörg
%T On the control net of certain multivariate spline functions
%J Communications in Mathematics
%D 1994
%P 113-125
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1994_2_1_a10/
%G en
%F COMIM_1994_2_1_a10
Wenz, Hans-Jörg. On the control net of certain multivariate spline functions. Communications in Mathematics, Tome 2 (1994) no. 1, pp. 113-125. http://geodesic.mathdoc.fr/item/COMIM_1994_2_1_a10/

[1] De Boor C.: Splines as linear combinations of B-splines: A survey. in: Lorentz G. G., Chui C. K., Schumaker L. L., Hrsg., Approximation Theory II, Academic Press, New York, 1976, 1-47. | MR | Zbl

[2] De Boor C.: B-form basics. in: Farin G., Hrsg., Geometric Modeling, Algorithms and New Trends, SIAM, Philadelphia, 1987, 131-148. | MR

[3] Cohen E., Schumaker L. L.: Rates of convergence of control polygons. CAGD 2 (1985), 229-235. | MR | Zbl

[4] Curry H. B., Schoenberg I. J.: On Pólya frequency functions IV: The fundamental spline functions and their limits. J. Analyse Math. 17 (1966), 71-107. | DOI | MR | Zbl

[5] Dahmen W., Micchelli C.A., Seidel H.-P.: Blossoming begets B-spline bases built better by B-patches. Math. Comp. 59 (199) (1992), 97-115. | MR

[6] Fong P., Seidel H.-P.: An implementation of triangular B-splline surfaces over arbitrary triangulations. CAGD 10 (1993), 267-275. | MR

[7] Hollig K.: Multivariate splines. SIAM J. Numer. Anal. 19 (5) (1982), 1013-1031. | DOI | MR

[8] Micchelli C A.: A constructive approach to Kergin interpolation in $R^k$: Multivariate B-splines and Lagrange-interpolation. Rocky Mountain J. Math. 10(3) (1980), 485-497. | DOI | MR

[9] Seidel H.-P.: Symmetric recursive algorithms for surfaces: B-patches and the de Boor algorithm for polynomials over triangles. Const. Approx. 7 (1991), 257-279. | DOI | MR | Zbl

[10] Seidel H.-P.: Representing piecewise polynomials as linear combinations of multivariate B-splines. in: Lyche T., and Schumaker L. L., Mathematical methods in computer aided geometric design, II, Academic Press, Boston (1992), 559-566. | MR

[11] Walter W.: Analysis II. Springer Verlag, Berlin, 1990. | Zbl