@article{COMIM_1994_2_1_a10,
author = {Wenz, Hans-J\"org},
title = {On the control net of certain multivariate spline functions},
journal = {Communications in Mathematics},
pages = {113--125},
year = {1994},
volume = {2},
number = {1},
mrnumber = {1309069},
zbl = {0848.41008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_1994_2_1_a10/}
}
Wenz, Hans-Jörg. On the control net of certain multivariate spline functions. Communications in Mathematics, Tome 2 (1994) no. 1, pp. 113-125. http://geodesic.mathdoc.fr/item/COMIM_1994_2_1_a10/
[1] De Boor C.: Splines as linear combinations of B-splines: A survey. in: Lorentz G. G., Chui C. K., Schumaker L. L., Hrsg., Approximation Theory II, Academic Press, New York, 1976, 1-47. | MR | Zbl
[2] De Boor C.: B-form basics. in: Farin G., Hrsg., Geometric Modeling, Algorithms and New Trends, SIAM, Philadelphia, 1987, 131-148. | MR
[3] Cohen E., Schumaker L. L.: Rates of convergence of control polygons. CAGD 2 (1985), 229-235. | MR | Zbl
[4] Curry H. B., Schoenberg I. J.: On Pólya frequency functions IV: The fundamental spline functions and their limits. J. Analyse Math. 17 (1966), 71-107. | DOI | MR | Zbl
[5] Dahmen W., Micchelli C.A., Seidel H.-P.: Blossoming begets B-spline bases built better by B-patches. Math. Comp. 59 (199) (1992), 97-115. | MR
[6] Fong P., Seidel H.-P.: An implementation of triangular B-splline surfaces over arbitrary triangulations. CAGD 10 (1993), 267-275. | MR
[7] Hollig K.: Multivariate splines. SIAM J. Numer. Anal. 19 (5) (1982), 1013-1031. | DOI | MR
[8] Micchelli C A.: A constructive approach to Kergin interpolation in $R^k$: Multivariate B-splines and Lagrange-interpolation. Rocky Mountain J. Math. 10(3) (1980), 485-497. | DOI | MR
[9] Seidel H.-P.: Symmetric recursive algorithms for surfaces: B-patches and the de Boor algorithm for polynomials over triangles. Const. Approx. 7 (1991), 257-279. | DOI | MR | Zbl
[10] Seidel H.-P.: Representing piecewise polynomials as linear combinations of multivariate B-splines. in: Lyche T., and Schumaker L. L., Mathematical methods in computer aided geometric design, II, Academic Press, Boston (1992), 559-566. | MR
[11] Walter W.: Analysis II. Springer Verlag, Berlin, 1990. | Zbl