Maximal reflectivity preserving subextensions
Communications in Mathematics, Tome 1 (1993) no. 1, pp. 59-66
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{COMIM_1993_1_1_a6,
author = {Skula, Ladislav},
title = {Maximal reflectivity preserving subextensions},
journal = {Communications in Mathematics},
pages = {59--66},
year = {1993},
volume = {1},
number = {1},
mrnumber = {1250927},
zbl = {0921.18001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_1993_1_1_a6/}
}
Skula, Ladislav. Maximal reflectivity preserving subextensions. Communications in Mathematics, Tome 1 (1993) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/COMIM_1993_1_1_a6/
[1] Čech E.: On bicompact spaces. Ann. of Math. 38 (1937), 823-844. | DOI | MR
[2] Herrlich H.: Topologische Reflexionen und Coreflexionen. Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg-New York, 1968. | MR | Zbl
[3] Herrlich H., Strecker G. E.: Category Theory. Allyn and Bacon, Boston, 1973. | MR | Zbl
[4] Mac Neille H.M.: Partially ordered sets. Trans. Amer. Math. Soc. 42 (1937), 416-460. | DOI | MR
[5] Mitchell B.: Theory of Categories. Academic Press, New York and London, 1965. | MR | Zbl
[6] Stone M. H.: Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc. 41 (1937), 375-481. | DOI | MR | Zbl