Relaxation of optimal control problems in -spaces
ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 73-95
Cet article a éte moissonné depuis la source Numdam
We consider control problems governed by semilinear parabolic equations with pointwise state constraints and controls in an -space (). We construct a correct relaxed problem, prove some relaxation results, and derive necessary optimality conditions.
Classification :
49K40, 49K20, 49J20
Keywords: optimal control problems, relaxation, generalized Young measures, stability properties, Pontryagin's principle
Keywords: optimal control problems, relaxation, generalized Young measures, stability properties, Pontryagin's principle
@article{COCV_2001__6__73_0,
author = {Arada, Nadir},
title = {Relaxation of optimal control problems in $\sf L^p$-spaces},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {73--95},
year = {2001},
publisher = {EDP-Sciences},
volume = {6},
mrnumber = {1804498},
zbl = {0965.49016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COCV_2001__6__73_0/}
}
Arada, Nadir. Relaxation of optimal control problems in $\sf L^p$-spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 73-95. http://geodesic.mathdoc.fr/item/COCV_2001__6__73_0/