Voir la notice de l'article provenant de la source Numdam
In this paper we consider second order evolution equations with unbounded feedbacks. Under a regularity assumption we show that observability properties for the undamped problem imply decay estimates for the damped problem. We consider both uniform and non uniform decay properties.
@article{COCV_2001__6__361_0, author = {Ammari, Kais and Tucsnak, Marius}, title = {Stabilization of second order evolution equations by a class of unbounded feedbacks}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {361--386}, publisher = {EDP-Sciences}, volume = {6}, year = {2001}, mrnumber = {1836048}, zbl = {0992.93039}, language = {en}, url = {http://geodesic.mathdoc.fr/item/COCV_2001__6__361_0/} }
TY - JOUR AU - Ammari, Kais AU - Tucsnak, Marius TI - Stabilization of second order evolution equations by a class of unbounded feedbacks JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 361 EP - 386 VL - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/COCV_2001__6__361_0/ LA - en ID - COCV_2001__6__361_0 ER -
%0 Journal Article %A Ammari, Kais %A Tucsnak, Marius %T Stabilization of second order evolution equations by a class of unbounded feedbacks %J ESAIM: Control, Optimisation and Calculus of Variations %D 2001 %P 361-386 %V 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/COCV_2001__6__361_0/ %G en %F COCV_2001__6__361_0
Ammari, Kais; Tucsnak, Marius. Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 361-386. http://geodesic.mathdoc.fr/item/COCV_2001__6__361_0/