Rank-2 distributions satisfying the Goursat condition : all their local models in dimension 7 and 8
ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 137-158

Voir la notice de l'article provenant de la source Numdam

@article{COCV_1999__4__137_0,
     author = {Cheaito, Mohamad and Mormul, Piotr},
     title = {Rank-$2$ distributions satisfying the {Goursat} condition : all their local models in dimension $7$ and $8$},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {137--158},
     publisher = {EDP-Sciences},
     volume = {4},
     year = {1999},
     mrnumber = {1816509},
     zbl = {0957.58002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COCV_1999__4__137_0/}
}
TY  - JOUR
AU  - Cheaito, Mohamad
AU  - Mormul, Piotr
TI  - Rank-$2$ distributions satisfying the Goursat condition : all their local models in dimension $7$ and $8$
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1999
SP  - 137
EP  - 158
VL  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/COCV_1999__4__137_0/
LA  - en
ID  - COCV_1999__4__137_0
ER  - 
%0 Journal Article
%A Cheaito, Mohamad
%A Mormul, Piotr
%T Rank-$2$ distributions satisfying the Goursat condition : all their local models in dimension $7$ and $8$
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1999
%P 137-158
%V 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/COCV_1999__4__137_0/
%G en
%F COCV_1999__4__137_0
Cheaito, Mohamad; Mormul, Piotr. Rank-$2$ distributions satisfying the Goursat condition : all their local models in dimension $7$ and $8$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 137-158. http://geodesic.mathdoc.fr/item/COCV_1999__4__137_0/