Rank- distributions satisfying the Goursat condition : all their local models in dimension and
ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 137-158
Cet article a éte moissonné depuis la source Numdam
@article{COCV_1999__4__137_0,
author = {Cheaito, Mohamad and Mormul, Piotr},
title = {Rank-$2$ distributions satisfying the {Goursat} condition : all their local models in dimension $7$ and $8$},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {137--158},
year = {1999},
publisher = {EDP-Sciences},
volume = {4},
mrnumber = {1816509},
zbl = {0957.58002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COCV_1999__4__137_0/}
}
TY - JOUR AU - Cheaito, Mohamad AU - Mormul, Piotr TI - Rank-$2$ distributions satisfying the Goursat condition : all their local models in dimension $7$ and $8$ JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1999 SP - 137 EP - 158 VL - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/COCV_1999__4__137_0/ LA - en ID - COCV_1999__4__137_0 ER -
%0 Journal Article %A Cheaito, Mohamad %A Mormul, Piotr %T Rank-$2$ distributions satisfying the Goursat condition : all their local models in dimension $7$ and $8$ %J ESAIM: Control, Optimisation and Calculus of Variations %D 1999 %P 137-158 %V 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/COCV_1999__4__137_0/ %G en %F COCV_1999__4__137_0
Cheaito, Mohamad; Mormul, Piotr. Rank-$2$ distributions satisfying the Goursat condition : all their local models in dimension $7$ and $8$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 137-158. http://geodesic.mathdoc.fr/item/COCV_1999__4__137_0/