Spherical functions on a complex classical quantum group
Compositio Mathematica, Tome 93 (1994) no. 2, pp. 113-128.

Voir la notice de l'article provenant de la source Numdam

@article{CM_1994__93_2_113_0,
     author = {Baldoni, Welleda and M\"oseneder Frajria, Pierluigi},
     title = {Spherical functions on a complex classical quantum group},
     journal = {Compositio Mathematica},
     pages = {113--128},
     publisher = {Kluwer Academic Publishers},
     volume = {93},
     number = {2},
     year = {1994},
     mrnumber = {1287692},
     zbl = {0814.17015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CM_1994__93_2_113_0/}
}
TY  - JOUR
AU  - Baldoni, Welleda
AU  - Möseneder Frajria, Pierluigi
TI  - Spherical functions on a complex classical quantum group
JO  - Compositio Mathematica
PY  - 1994
SP  - 113
EP  - 128
VL  - 93
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://geodesic.mathdoc.fr/item/CM_1994__93_2_113_0/
LA  - en
ID  - CM_1994__93_2_113_0
ER  - 
%0 Journal Article
%A Baldoni, Welleda
%A Möseneder Frajria, Pierluigi
%T Spherical functions on a complex classical quantum group
%J Compositio Mathematica
%D 1994
%P 113-128
%V 93
%N 2
%I Kluwer Academic Publishers
%U http://geodesic.mathdoc.fr/item/CM_1994__93_2_113_0/
%G en
%F CM_1994__93_2_113_0
Baldoni, Welleda; Möseneder Frajria, Pierluigi. Spherical functions on a complex classical quantum group. Compositio Mathematica, Tome 93 (1994) no. 2, pp. 113-128. http://geodesic.mathdoc.fr/item/CM_1994__93_2_113_0/

1 W.M. Baldoni and P. Möseneder Frajria, Spherical functions on SLq (2, C), (to appear).

2 V.G. Drinfel'D, Quantum groups, Proceedings of the International Congress of Mathematicians, Berkeley, 1986, pp. 798-820. | Zbl | MR

3 M. Duflo, Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple, Ann. of Math. 105 (1977), 107-120. | Zbl | MR

4 G.J. Heckman, Lectures on Hypergeometric and Spherical Functions, Notes of the Lectures given at the European School of Group Theory, Marseille, July 1991.

5 H. Jack, A class of symmetric polynomials with a parameter, R.S. Edinburgh 69A (1970), 1-18. | Zbl | MR

6 M. Jimbo, A q-difference analog of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69. | Zbl | MR

7 M. Kashiwara, On Crystal bases of the q-analogue of universal enveloping algebras., Duke Math. J. 63 (1991), 465-515. | Zbl | MR

8 T.H. Koornwinder, Continuous q-Legendre polynomials as spherical matrix elements of irreducible representations of the quantum SU(2) group, C.W.I. Quarterly 2 (1989), 171-173. | Zbl

9 G. Lusztig, Quantum deformation of certain simple modules over enveloping algebras, Advances in Math. 70 (1988), 237-249. | Zbl | MR

10 I.G. Macdonald, Commuting differential operators and zonal spherical functions, Lecture Notes in Mathematics 1271 (A. M. Cohen, W. H. Hesselink, W. L. J. van der Kalen, and J. R. Strooker, eds.), Springer-Verlag, Berlin- Heidelberg, New York, 1987, pp. 189-200. | Zbl | MR

11 -, Orthogonal polynomials associated with root systems, preprint.

12 -, Symmetric Functions and Hall Polynomials, 2nd edition (to appear).

13 M. Noumi and K. Mimachi, Roger's q-ultraspherical polynomials on a quantum 2-sphere, Duke Math. J. 63 (1991), 65-80. | Zbl | MR

14 P. Podles, Complex quantum groups and their real representations, Publ. RIMS 28 (1992), 709-745. | Zbl | MR

15 N. Yu. Reshetikhin, L.A. Takhtajan, and L.D. Fadeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J 1 (1990), 193-225. | Zbl | MR

16 L.J. Rogers, Third memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1895), 15-32. | JFM

17 M. Rosso, Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117 (1988), 581-593. | Zbl | MR

18 -, Algèbres enveloppantes quantifiées, groupes quantiques compacts de matrices et calcul différentiel non commutatif, Duke Math. J. 61 (1990), 11-40. | Zbl

19 Ya. S. Soibel'Man, An algebra of functions on a compact quantum groups, Leningrade Math. J. 2 (1991), 161-178. | Zbl | MR

20 S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665. | Zbl | MR