The conductor of an abelian variety
Compositio Mathematica, Tome 92 (1994) no. 2, pp. 227-248.

Voir la notice de l'article provenant de la source Numdam

@article{CM_1994__92_2_227_0,
     author = {Brumer, Armand and Kramer, Kenneth},
     title = {The conductor of an abelian variety},
     journal = {Compositio Mathematica},
     pages = {227--248},
     publisher = {Kluwer Academic Publishers},
     volume = {92},
     number = {2},
     year = {1994},
     mrnumber = {1283229},
     zbl = {0818.14016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CM_1994__92_2_227_0/}
}
TY  - JOUR
AU  - Brumer, Armand
AU  - Kramer, Kenneth
TI  - The conductor of an abelian variety
JO  - Compositio Mathematica
PY  - 1994
SP  - 227
EP  - 248
VL  - 92
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://geodesic.mathdoc.fr/item/CM_1994__92_2_227_0/
LA  - en
ID  - CM_1994__92_2_227_0
ER  - 
%0 Journal Article
%A Brumer, Armand
%A Kramer, Kenneth
%T The conductor of an abelian variety
%J Compositio Mathematica
%D 1994
%P 227-248
%V 92
%N 2
%I Kluwer Academic Publishers
%U http://geodesic.mathdoc.fr/item/CM_1994__92_2_227_0/
%G en
%F CM_1994__92_2_227_0
Brumer, Armand; Kramer, Kenneth. The conductor of an abelian variety. Compositio Mathematica, Tome 92 (1994) no. 2, pp. 227-248. http://geodesic.mathdoc.fr/item/CM_1994__92_2_227_0/

1 A. Brumer: The rank of J0(N). Submitted to Astérisque. | Zbl | MR

2 C.W. Curtis and I. Reiner: Methods of Representation Theory. 2 vols. John Wiley, New York, 1987. | Zbl | MR

3 J.-M. Fontaine: Groupes de ramification et représentation d'Artin. Ann. Sci. E.N.S. (4) 4 (1971) 337-392. | Zbl | MR | mathdoc-id

4 A. Grothendieck: Modèles de Néron et monodromie. SGA 7, Exposé IX, Lecture Notes in Math. 288, 313-523, Springer-Verlag: Berlin, New York, 1970. | Zbl | MR

5 B. Huppert: Endliche Gruppen I. Springer-Verlag: Berlin, New York, 1967. | Zbl | MR

6 H W. Lenstra, F. Oort: Abelian varieties having purely additive reduction. J. Pure and Applied Algebra 36 (1985) 281-298. | Zbl | MR

7 P. Lockhart, M.I. Rosen, J. Silverman: An upper bound for the conductor of an abelian variety. Journal of Algebraic Geometry 2 (1993) 569-601. | Zbl | MR

8 D. Lorenzini: Groups of components of Néron models of Jacobians. Compositio Math. 73 (1990) 145-160. | Zbl | MR | mathdoc-id

9 J. Milne: The arithmetic of abelian varieties. Inv. Math. 17 (1972) 177-190. | Zbl | MR

10 F. Oort: Good and stable reduction of abelian varieties. Manuscripta Math. 11 (1974) 171-197. | Zbl | MR

11 O. Ore: Abriss einer arithmetischen theorie der Galoischen Körper. Math. Ann. 100 (1928) 650-673. | MR | JFM

12 S. Sen: Ramification in p-adic Lie extensions. Inv. Math. 17 (1972) 44-50. | Zbl | MR

13 J.-P. Serre: Corps locaux. Hermann, Paris, 1962, or Grad. Texts in Math. 67, Springer-Verlag: Berlin, New York, 1979. | Zbl | MR

14 J.-P. Serre: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Inv. Math. 15 (1972) 259-331. | Zbl | MR

15 J.-P. Serre: Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke Math. J. 54 (1987) 179-230. | Zbl | MR

16 J.-P. Serre, J. Tate: Good reduction of abelian varieties. Annals of Mathematics 88 (1968) 492-517. | Zbl | MR

17 T. Saito*: Conductor, discriminant and the Noether formula for arithmetic surfaces. Duke Math. J. 57 (1988) 151-173. | Zbl | MR