An isoperimetric inequality for the area of plane regions defined by binary forms
Compositio Mathematica, Tome 92 (1994) no. 2, pp. 115-131.

Voir la notice de l'article provenant de la source Numdam

@article{CM_1994__92_2_115_0,
     author = {Bean, Michael A.},
     title = {An isoperimetric inequality for the area of plane regions defined by binary forms},
     journal = {Compositio Mathematica},
     pages = {115--131},
     publisher = {Kluwer Academic Publishers},
     volume = {92},
     number = {2},
     year = {1994},
     mrnumber = {1283225},
     zbl = {0816.11026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CM_1994__92_2_115_0/}
}
TY  - JOUR
AU  - Bean, Michael A.
TI  - An isoperimetric inequality for the area of plane regions defined by binary forms
JO  - Compositio Mathematica
PY  - 1994
SP  - 115
EP  - 131
VL  - 92
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://geodesic.mathdoc.fr/item/CM_1994__92_2_115_0/
LA  - en
ID  - CM_1994__92_2_115_0
ER  - 
%0 Journal Article
%A Bean, Michael A.
%T An isoperimetric inequality for the area of plane regions defined by binary forms
%J Compositio Mathematica
%D 1994
%P 115-131
%V 92
%N 2
%I Kluwer Academic Publishers
%U http://geodesic.mathdoc.fr/item/CM_1994__92_2_115_0/
%G en
%F CM_1994__92_2_115_0
Bean, Michael A. An isoperimetric inequality for the area of plane regions defined by binary forms. Compositio Mathematica, Tome 92 (1994) no. 2, pp. 115-131. http://geodesic.mathdoc.fr/item/CM_1994__92_2_115_0/

1 Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, Dover, 1965.

2 Ahlfors, L.V., Complex Analysis, 3rd edition, McGraw-Hill, New York, 1979. | Zbl | MR

3 Bean, M.A., Areas of Plane Regions Defined by Binary Forms, Ph.D. Thesis, University of Waterloo, 1992.

4 Beardon, A.F., The Geometry of Discrete Groups, Springer, New York, 1983. | Zbl | MR

5 Bombieri, E. and Schmidt, W.M., On Thue's equation, Invent. Math., 88 (1987) 69-81. | Zbl | MR

6 Dickson, L.E., Algebraic Invariants, Wiley, New York, 1914. | JFM

7 Hardy, G.H., Littlewood, J.E., and Polya, G., Inequalities, Cambridge, 1952. | MR | JFM

8 Gunning, R.C., Introduction to Holomorphic Functions of Several Variables, Wadsworth & Brooks-Cole, 1990. | Zbl

9 Hooley, C., On binary cubic forms, J. reine angew. Math., 226 (1967) 30-87. | Zbl | MR

10 Hormander, L., An Introduction to Complex Analysis in Several Variables, 3rd edition, North-Holland, Amsterdam, 1990. | Zbl | MR

11 Mahler, K., Zur Approximation algebraischer Zahlen III, Acta Math., 62 (1933) 91-166. | Zbl | JFM

12 Mueller, J. and Schmidt, W.M., Thue's equation and a conjecture of Siegel, Acta Math., 160 (1988) 207-247. | Zbl | MR

13 Mueller, J. and Schmidt, W.M., On the Newton Polygon, Mh. Math., 113 (1992) 33-50. | Zbl | MR

14 Salmon, G.C., Modern Higher Algebra, 3rd edition, Dublin, 1876, 4th edition, Dublin, 1885 (reprinted 1924, New York).

15 Schmidt, W.M., Thue equations with few coefficients, Trans. Amer. Math. Soc., 303 (1987) 241-255. | Zbl | MR

16 Stewart, C.L., On the number of solutions of polynomial congruences and Thue equations, J. Amer. Math. Soc., 4 (1991) 793-835. | Zbl | MR

17 Thue, A., Uber Annaherungswerte algebraischer Zahlen, J. reine angew. Math., 135 (1909) 284-305. | JFM

18 Van Der Waerden, B.L., Algebra, Volumes 1 and 2, Springer, 1991. | MR