Eindeutigkeit der Lösungen der Gleichung x d +y d =ap
Compositio Mathematica, Tome 88 (1993) no. 1, pp. 25-38.

Voir la notice de l'article provenant de la source Numdam

@article{CM_1993__88_1_25_0,
     author = {Langmann, Klaus},
     title = {Eindeutigkeit der {L\"osungen} der {Gleichung} $x^d + y^d = ap$},
     journal = {Compositio Mathematica},
     pages = {25--38},
     publisher = {Kluwer Academic Publishers},
     volume = {88},
     number = {1},
     year = {1993},
     mrnumber = {1234975},
     zbl = {0782.11011},
     language = {de},
     url = {http://geodesic.mathdoc.fr/item/CM_1993__88_1_25_0/}
}
TY  - JOUR
AU  - Langmann, Klaus
TI  - Eindeutigkeit der Lösungen der Gleichung $x^d + y^d = ap$
JO  - Compositio Mathematica
PY  - 1993
SP  - 25
EP  - 38
VL  - 88
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://geodesic.mathdoc.fr/item/CM_1993__88_1_25_0/
LA  - de
ID  - CM_1993__88_1_25_0
ER  - 
%0 Journal Article
%A Langmann, Klaus
%T Eindeutigkeit der Lösungen der Gleichung $x^d + y^d = ap$
%J Compositio Mathematica
%D 1993
%P 25-38
%V 88
%N 1
%I Kluwer Academic Publishers
%U http://geodesic.mathdoc.fr/item/CM_1993__88_1_25_0/
%G de
%F CM_1993__88_1_25_0
Langmann, Klaus. Eindeutigkeit der Lösungen der Gleichung $x^d + y^d = ap$. Compositio Mathematica, Tome 88 (1993) no. 1, pp. 25-38. http://geodesic.mathdoc.fr/item/CM_1993__88_1_25_0/

1 Bombieri, E.: Schmidt, W.M.: On Thue's equation. Invent. Math. 88 (1987), 69-81. | Zbl | MR

2 Evertse, J.H.: Upper Bounds for the Number of Solutions of Diophantine Equations. Math Centrum Amsterdam 1987, pp. 1-127. | Zbl | MR

3 Evertse, J.H.: On sums of S-units and linear recurrences. Compos. Math. 53 (1984), 225-244. | Zbl | MR | mathdoc-id

4 Langmann, K.: Lösungsanzahl der Thue-Gleichung. Eingereicht bei Compos. Math. | mathdoc-id

5 Stewart, C.L.: On the number of solutions of polynomial congruences and Thue equations. Erscheint in Journal of the AMS. | Zbl