Voir la notice de l'article provenant de la source Numdam
@article{CM_1991__80_2_137_0, author = {Nishiyama, Kyo}, title = {Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $}, journal = {Compositio Mathematica}, pages = {137--149}, publisher = {Kluwer Academic Publishers}, volume = {80}, number = {2}, year = {1991}, mrnumber = {1132090}, zbl = {0741.17002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/} }
TY - JOUR AU - Nishiyama, Kyo TI - Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $ JO - Compositio Mathematica PY - 1991 SP - 137 EP - 149 VL - 80 IS - 2 PB - Kluwer Academic Publishers UR - http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/ LA - en ID - CM_1991__80_2_137_0 ER -
%0 Journal Article %A Nishiyama, Kyo %T Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $ %J Compositio Mathematica %D 1991 %P 137-149 %V 80 %N 2 %I Kluwer Academic Publishers %U http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/ %G en %F CM_1991__80_2_137_0
Nishiyama, Kyo. Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $. Compositio Mathematica, Tome 80 (1991) no. 2, pp. 137-149. http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/