Decomposing oscillator representations of by a super dual pair
Compositio Mathematica, Tome 80 (1991) no. 2, pp. 137-149
Voir la notice de l'article provenant de la source Numdam
@article{CM_1991__80_2_137_0,
author = {Nishiyama, Kyo},
title = {Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $},
journal = {Compositio Mathematica},
pages = {137--149},
publisher = {Kluwer Academic Publishers},
volume = {80},
number = {2},
year = {1991},
mrnumber = {1132090},
zbl = {0741.17002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/}
}
TY - JOUR
AU - Nishiyama, Kyo
TI - Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $
JO - Compositio Mathematica
PY - 1991
SP - 137
EP - 149
VL - 80
IS - 2
PB - Kluwer Academic Publishers
UR - http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/
LA - en
ID - CM_1991__80_2_137_0
ER -
%0 Journal Article
%A Nishiyama, Kyo
%T Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $
%J Compositio Mathematica
%D 1991
%P 137-149
%V 80
%N 2
%I Kluwer Academic Publishers
%U http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/
%G en
%F CM_1991__80_2_137_0
Nishiyama, Kyo. Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $. Compositio Mathematica, Tome 80 (1991) no. 2, pp. 137-149. http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/