Decomposing oscillator representations of 𝔬𝔰𝔭(2n/n;) by a super dual pair 𝔬𝔰𝔭(2/1;)×𝔰𝔬(n) *
Compositio Mathematica, Tome 80 (1991) no. 2, pp. 137-149

Voir la notice de l'article provenant de la source Numdam

@article{CM_1991__80_2_137_0,
     author = {Nishiyama, Kyo},
     title = {Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $},
     journal = {Compositio Mathematica},
     pages = {137--149},
     publisher = {Kluwer Academic Publishers},
     volume = {80},
     number = {2},
     year = {1991},
     mrnumber = {1132090},
     zbl = {0741.17002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/}
}
TY  - JOUR
AU  - Nishiyama, Kyo
TI  - Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $
JO  - Compositio Mathematica
PY  - 1991
SP  - 137
EP  - 149
VL  - 80
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/
LA  - en
ID  - CM_1991__80_2_137_0
ER  - 
%0 Journal Article
%A Nishiyama, Kyo
%T Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $
%J Compositio Mathematica
%D 1991
%P 137-149
%V 80
%N 2
%I Kluwer Academic Publishers
%U http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/
%G en
%F CM_1991__80_2_137_0
Nishiyama, Kyo. Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $. Compositio Mathematica, Tome 80 (1991) no. 2, pp. 137-149. http://geodesic.mathdoc.fr/item/CM_1991__80_2_137_0/