Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically n , n>2
Compositio Mathematica, Tome 75 (1990) no. 2, pp. 219-230

Voir la notice de l'article provenant de la source Numdam

@article{CM_1990__75_2_219_0,
     author = {Delano\"e, Philippe},
     title = {Extending {Calabi{\textquoteright}s} conjecture to complete noncompact {K\"ahler} manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$},
     journal = {Compositio Mathematica},
     pages = {219--230},
     publisher = {Kluwer Academic Publishers},
     volume = {75},
     number = {2},
     year = {1990},
     mrnumber = {1065207},
     zbl = {0703.53056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CM_1990__75_2_219_0/}
}
TY  - JOUR
AU  - Delanoë, Philippe
TI  - Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$
JO  - Compositio Mathematica
PY  - 1990
SP  - 219
EP  - 230
VL  - 75
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://geodesic.mathdoc.fr/item/CM_1990__75_2_219_0/
LA  - en
ID  - CM_1990__75_2_219_0
ER  - 
%0 Journal Article
%A Delanoë, Philippe
%T Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$
%J Compositio Mathematica
%D 1990
%P 219-230
%V 75
%N 2
%I Kluwer Academic Publishers
%U http://geodesic.mathdoc.fr/item/CM_1990__75_2_219_0/
%G en
%F CM_1990__75_2_219_0
Delanoë, Philippe. Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$. Compositio Mathematica, Tome 75 (1990) no. 2, pp. 219-230. http://geodesic.mathdoc.fr/item/CM_1990__75_2_219_0/