Voir la notice de l'article provenant de la source Numdam
@article{CM_1990__75_2_219_0, author = {Delano\"e, Philippe}, title = {Extending {Calabi{\textquoteright}s} conjecture to complete noncompact {K\"ahler} manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$}, journal = {Compositio Mathematica}, pages = {219--230}, publisher = {Kluwer Academic Publishers}, volume = {75}, number = {2}, year = {1990}, mrnumber = {1065207}, zbl = {0703.53056}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CM_1990__75_2_219_0/} }
TY - JOUR AU - Delanoë, Philippe TI - Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$ JO - Compositio Mathematica PY - 1990 SP - 219 EP - 230 VL - 75 IS - 2 PB - Kluwer Academic Publishers UR - http://geodesic.mathdoc.fr/item/CM_1990__75_2_219_0/ LA - en ID - CM_1990__75_2_219_0 ER -
%0 Journal Article %A Delanoë, Philippe %T Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$ %J Compositio Mathematica %D 1990 %P 219-230 %V 75 %N 2 %I Kluwer Academic Publishers %U http://geodesic.mathdoc.fr/item/CM_1990__75_2_219_0/ %G en %F CM_1990__75_2_219_0
Delanoë, Philippe. Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$. Compositio Mathematica, Tome 75 (1990) no. 2, pp. 219-230. http://geodesic.mathdoc.fr/item/CM_1990__75_2_219_0/