A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations
Compositio Mathematica, Tome 68 (1988) no. 2, pp. 221-239

Voir la notice de l'article provenant de la source Numdam

@article{CM_1988__68_2_221_0,
     author = {Naito, Hisashi},
     title = {A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations},
     journal = {Compositio Mathematica},
     pages = {221--239},
     publisher = {Kluwer Academic Publishers},
     volume = {68},
     number = {2},
     year = {1988},
     mrnumber = {966581},
     zbl = {0669.35049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CM_1988__68_2_221_0/}
}
TY  - JOUR
AU  - Naito, Hisashi
TI  - A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations
JO  - Compositio Mathematica
PY  - 1988
SP  - 221
EP  - 239
VL  - 68
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://geodesic.mathdoc.fr/item/CM_1988__68_2_221_0/
LA  - en
ID  - CM_1988__68_2_221_0
ER  - 
%0 Journal Article
%A Naito, Hisashi
%T A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations
%J Compositio Mathematica
%D 1988
%P 221-239
%V 68
%N 2
%I Kluwer Academic Publishers
%U http://geodesic.mathdoc.fr/item/CM_1988__68_2_221_0/
%G en
%F CM_1988__68_2_221_0
Naito, Hisashi. A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations. Compositio Mathematica, Tome 68 (1988) no. 2, pp. 221-239. http://geodesic.mathdoc.fr/item/CM_1988__68_2_221_0/