Voir la notice de l'article provenant de la source Numdam
@article{CM_1988__68_2_161_0, author = {Mrozik, Peter}, title = {Finite-dimensional categorial complement theorems in shape theory}, journal = {Compositio Mathematica}, pages = {161--173}, publisher = {Kluwer Academic Publishers}, volume = {68}, number = {2}, year = {1988}, mrnumber = {966578}, zbl = {0665.55006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CM_1988__68_2_161_0/} }
Mrozik, Peter. Finite-dimensional categorial complement theorems in shape theory. Compositio Mathematica, Tome 68 (1988) no. 2, pp. 161-173. http://geodesic.mathdoc.fr/item/CM_1988__68_2_161_0/
1 Theory of Retracts. Monografie Matematyczne Tom 44, PWN Warszawa (1967). | Zbl | MR
:2 On some applications of infinite-dimensional manifolds to the theory of shape. Fund. Math. 76 (1972) 181-193. | Zbl | MR
:3 Shapes of finite-dimensional compacta, Fund. Math. 76 (1972) 261-276. | Zbl | MR
:4 Čech and Steenrod Homotopy Theories with Applications to Geometric Topology. Lecture Notes in Math. 542, Springer, Berlin-Heidelberg-New York (1976). | Zbl | MR
and :5 Shape Theory. North Holland, Amsterdam (1982). | Zbl | MR
and :6 Cohomology Operations and Applications in Homotopy Theory. Harper & Row, New York (1968). | Zbl | MR
and :7 Chapman's category isomorphism for arbitrary ARs. Fund. Math. 125 (1985) 195-208. | Zbl | MR
:8 Complement theorems in shape theory. In: Shape Theory and Geometric Topology S. Mardešić and J. Segal (ed.) Lecture Notes in Math. 870, Springer, Berlin-Heidelberg -New York (1981) pp. 150-168. | Zbl | MR
:9 Algebraic Topology. McGraw-Hill, New York (1966). | Zbl | MR
:10 Embeddings of compacta with shape dimension in the trivial range. Proc. Amer. Math. Soc. 55 (1976) 443-448. | Zbl | MR
:11 Embeddings in shape theory. In: Shape Theory and Geometric Topology. S. Mardešić and J. Segal (eds.) Lecture Notes in Math. 870, Springer, Berlin-Heidelberg -New York (1981) pp. 169-185. | Zbl | MR
: