Voir la notice de l'article provenant de la source Numdam
@article{CM_1987__63_3_273_0, author = {Lang, Jeffrey}, title = {The factoriality of {Zariski} rings}, journal = {Compositio Mathematica}, pages = {273--290}, publisher = {Martinus Nijhoff Publishers}, volume = {63}, number = {3}, year = {1987}, mrnumber = {909383}, zbl = {0631.13017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CM_1987__63_3_273_0/} }
Lang, Jeffrey. The factoriality of Zariski rings. Compositio Mathematica, Tome 63 (1987) no. 3, pp. 273-290. http://geodesic.mathdoc.fr/item/CM_1987__63_3_273_0/
1 Zariski Surfaces. Dissertations Mathematicae 200 (1980). | Zbl | MR
:2 Some geometric applications of a dinerential equation in characteristic p > 0 to the theory of algebraic surfaces. Contemp. Math. A.M.S. 13 (1982). | Zbl
:3 Picard groups of Zariski Surfaces I. Comp. Math. 54 (1985) 3-86. | mathdoc-id | Zbl | MR | EuDML
:4 Picard groups of Zariski Surfaces II. Comp. Math. 54 (1985) 36-39. | Zbl | MR | mathdoc-id
and :5 The Divisor Class Group of a Krull Domain. Springer-Verlag, New York (1973). | Zbl | MR
:6 Combinatorial Identities. Morgantown, W. Va (1972). | Zbl | MR
:7 Algebraic Geometry. Springer-Verlag, New York (1977). | Zbl | MR
:8 Commutative Rings. Allyn and Bacon, Boston (1970). | Zbl | MR
:9 An example related to the affine theorem of Castelnuovo. Michigan Math. J. 28 (1981). | Zbl | MR
:10 The divisor classes of the hypersurfaces zpn = G(x1, ..., xm) in characteristic p > 0. Trans A.M.S. 278 2 (1983). | Zbl | MR
:11 The divisor class group of the surface zpn = G(x, y) over fields of characteristic p > 0. J. Alg. 84, 2 (1983). | Zbl | MR
:12 The divisor classes of the surface zp = G(x, y), a programmable problem. J. Alg. 100, (1986).
:13 Locally factorial generic Zariski surfaces are factorial. J. Alg., to appear. | Zbl
:14 Local Rings. John Wiley & Sons, Inc. (1962). | Zbl | MR
:15 Field Theory. Marcel Dekker, Inc. (1977). | Zbl | MR
:16 A formula for the Cartier operator on plane algebraic curves. Submitted for publication.
and :17 Lectures on Unique Factorization Domains. Tata Lecture Notes (1964). | Zbl | MR
:18 Algebraic Curves. Princeton University Press, Princeton, (1950). | Zbl | MR
: