Torelli theorem for surfaces with p g =c 1 2 =1 and K ample and with certain type of automorphism
Compositio Mathematica, Tome 45 (1982) no. 3, pp. 293-314

Voir la notice de l'article provenant de la source Numdam

@article{CM_1982__45_3_293_0,
     author = {Usui, Sampei},
     title = {Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism},
     journal = {Compositio Mathematica},
     pages = {293--314},
     publisher = {Martinus Nijhoff Publishers},
     volume = {45},
     number = {3},
     year = {1982},
     mrnumber = {656607},
     zbl = {0507.14028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CM_1982__45_3_293_0/}
}
TY  - JOUR
AU  - Usui, Sampei
TI  - Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism
JO  - Compositio Mathematica
PY  - 1982
SP  - 293
EP  - 314
VL  - 45
IS  - 3
PB  - Martinus Nijhoff Publishers
UR  - http://geodesic.mathdoc.fr/item/CM_1982__45_3_293_0/
LA  - en
ID  - CM_1982__45_3_293_0
ER  - 
%0 Journal Article
%A Usui, Sampei
%T Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism
%J Compositio Mathematica
%D 1982
%P 293-314
%V 45
%N 3
%I Martinus Nijhoff Publishers
%U http://geodesic.mathdoc.fr/item/CM_1982__45_3_293_0/
%G en
%F CM_1982__45_3_293_0
Usui, Sampei. Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism. Compositio Mathematica, Tome 45 (1982) no. 3, pp. 293-314. http://geodesic.mathdoc.fr/item/CM_1982__45_3_293_0/