Voir la notice de l'article provenant de la source Numdam
@article{CM_1981__43_2_225_0, author = {Yomdin, Yosef}, title = {On the local structure of a generic central set}, journal = {Compositio Mathematica}, pages = {225--238}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {43}, number = {2}, year = {1981}, mrnumber = {622449}, zbl = {0465.58008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CM_1981__43_2_225_0/} }
TY - JOUR AU - Yomdin, Yosef TI - On the local structure of a generic central set JO - Compositio Mathematica PY - 1981 SP - 225 EP - 238 VL - 43 IS - 2 PB - Sijthoff et Noordhoff International Publishers UR - http://geodesic.mathdoc.fr/item/CM_1981__43_2_225_0/ LA - en ID - CM_1981__43_2_225_0 ER -
Yomdin, Yosef. On the local structure of a generic central set. Compositio Mathematica, Tome 43 (1981) no. 2, pp. 225-238. http://geodesic.mathdoc.fr/item/CM_1981__43_2_225_0/
[1] Differentiable germs and catastrophes. London Math. Society Lect. Notes series, 17. Cambridge University Press, 1975. | Zbl | MR
and :[2] Stability of the cut locus in dimensions less than or equal to six. Inventiones Math., 43 (1977) 199-231. | Zbl | MR
:[3] The structure of the cut locus in dimension less than or equal to six. Compositio Math., 37, 1 (1978) 103-119. | Zbl | MR | mathdoc-id
:[4] Generalized gradients and applications. Trans. Amer. Math. Soc., 205 (1975) 247-262. | Zbl | MR
:[5] On the inverse function theorem. Pacific J. Math., 64 (1976) 97-102. | Zbl | MR
:[6] Pattern Classification and Scene Analysis. Wiley, 1973. | Zbl
and :[7] Structural stability of smooth families of C∞-functions. Doctoral thesis, Universiteit van Amsterdam, 1974.
:[8] Eine geometrische Ungleihung und ihre Anvendung (Die zentrale Menge des Gebites und die Erkennung des Gebites durch sie). In "General Inequalities ", v. 2., edited by E.F. Beckenbach (to appear). | Zbl | MR
:[9] On topological properties of the central set of a bounded domain in Rm (to appear). | Zbl
and :[10] The central function of the boundary of a domain and its differentiable properties (to appear). | Zbl | MR
:[11] Sur le cut-locus d'une varieté plongée. J. Diff. Geom., 6 (1972) 577-586. | Zbl | MR
:[12] Geometric properties of generic differentiable manifolds: in "Geometry and Topology", Proceeding of the III Latin American School of Mathematics, Rio de Janero, 1976, Lecture Notes in Math., 597, 707-774. | Zbl | MR
: