Voir la notice de l'article provenant de la source Numdam
@article{CM_1979__38_2_201_0, author = {Gilkey, Peter B.}, title = {Recursion relations and the asymptotic behavior of the eigenvalues of the laplacian}, journal = {Compositio Mathematica}, pages = {201--240}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {38}, number = {2}, year = {1979}, mrnumber = {528840}, zbl = {0405.58050}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CM_1979__38_2_201_0/} }
TY - JOUR AU - Gilkey, Peter B. TI - Recursion relations and the asymptotic behavior of the eigenvalues of the laplacian JO - Compositio Mathematica PY - 1979 SP - 201 EP - 240 VL - 38 IS - 2 PB - Sijthoff et Noordhoff International Publishers UR - http://geodesic.mathdoc.fr/item/CM_1979__38_2_201_0/ LA - en ID - CM_1979__38_2_201_0 ER -
%0 Journal Article %A Gilkey, Peter B. %T Recursion relations and the asymptotic behavior of the eigenvalues of the laplacian %J Compositio Mathematica %D 1979 %P 201-240 %V 38 %N 2 %I Sijthoff et Noordhoff International Publishers %U http://geodesic.mathdoc.fr/item/CM_1979__38_2_201_0/ %G en %F CM_1979__38_2_201_0
Gilkey, Peter B. Recursion relations and the asymptotic behavior of the eigenvalues of the laplacian. Compositio Mathematica, Tome 38 (1979) no. 2, pp. 201-240. http://geodesic.mathdoc.fr/item/CM_1979__38_2_201_0/
[1] On the heat equation and the index theorem. Invent. Math. 19 (1973) 279-330. | Zbl | MR
, and :[2] Clifford Modules. Topology 3 (1963) 3-38. | Zbl | MR
, and :[3] Spectral asymmetry and Riemannian geometry. Bull. Lond. Math. Soc. 5 (1973) 229-234. | Zbl | MR
, and :[4] Sur le spectre d'une variété Riemannienne. C.R. Acad. Sci. Paris 263 (1963) 13-16. | Zbl
:[5] A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. Math. 45 (1944) 747-752. | Zbl | MR
:[6] Spectrum and fixed point set of isometries II. Topology 16 (1977) 1-12. | Zbl | MR
and :[7] Natural Tensors on Riemannian Manifolds. J. Diff. Geo 10 (1973) 631-646. | Zbl | MR
:[8] Curvature and the eigenvalues of the Laplacian for elliptic complexes. Advances in Math. 10 (1973) 344-382. | Zbl | MR
:[9] Spectral Geometry of a Riemannian Manifold. J. Diff. Geo. 10 (1975) 601-618. | Zbl | MR
:[10] Spectral Geometry of real and complex manifolds. Proc. Symp. Pure and App. Math. 27 (1975) 265-280. | Zbl | MR
:[11] Spectral Geometry of symmetric spaces. AMS transactions 225 (1977) 341-353. | Zbl | MR
:[12] Lefschetz formulas and the heat equation (to appear).
:[13] Spectral geometry and the Lefschetz formulas for a holomorphic isometry of an almost complex manifold (to appear).
:[14] The Boundary Integrand in the formula for the Signature and Euler characteristic of a Riemannian manifold with boundary. Advances in Math. 15 (1975) 334-360. | Zbl | MR
:[15] Local invariants of a pseudo-Riemannian manifold. Math. Scand. 36 (1975) 109-130. | Zbl | MR
:[15a] Curvature and the heat equation for the Delham complex (to appear).
:[16] An asymptotic expansion for the heat equation. Arch. Rat. Mech. Anal. 41 (1971) 163-218. | Zbl | MR
:[17] The Signature Theorem for V-Manifolds (to appear in Topology). | Zbl | MR
:[18] Mouvement Brownian et Valeurs propres du Laplacian. Ann. Inst. Henri Poincaré, vol. IV (1968) 331-342. | Zbl | MR | mathdoc-id
:[19] The spectrum of Hill's equation. Invent. Math. 30 (1975) 217-274. | Zbl | MR
and :[20] Curvature and the eigenforms of the Laplacian. J. Diff. Geo. 1 (1967) 43-69. | Zbl | MR
and :[21] Curvature and the eigenforms of the Laplace operator. J. Diff. Geo. 5 (1971) 233-249. | Zbl | MR
:[22] Curvature and the fundamental solution of the heat equation. J. Indian Math. Soc. 34 (1970) 269-285. | Zbl | MR
:[23] On the eigenvalues of the Laplacian and curvature of Riemannian manifold. Tohuku Math. J. 23 (1971) 585-603. | Zbl | MR
:[24] Complex powers of an elliptic operator. Proc. Symp. Pure and App. Math. 10 (1967) 288-307. | Zbl | MR
:[25] Singular integrals and boundary problems. Amer. J. Math. 88 (1966) 781-809. | Zbl | MR
:[26] Natural differential operators on Riemannian manifolds and representations of the orthogonal and special orthogonal group. J. Diff. Geo. 10 (1975) 647-660. | Zbl | MR
:[27] The classical groups. Princeton University Press, Princeton N.J. 1946 (USA). | Zbl | JFM
: