Generalization of -adic cohomology ; bounded Witt vectors. A canonical lifting of a variety in characteristic back to characteristic zero
Compositio Mathematica, Tome 34 (1977) no. 3, pp. 225-277
Voir la notice de l'article provenant de la source Numdam
@article{CM_1977__34_3_225_0,
author = {Lubkin, Saul},
title = {Generalization of $p$-adic cohomology ; bounded {Witt} vectors. {A} canonical lifting of a variety in characteristic $p \ne 0$ back to characteristic zero},
journal = {Compositio Mathematica},
pages = {225--277},
publisher = {Noordhoff International Publishing},
volume = {34},
number = {3},
year = {1977},
mrnumber = {453745},
zbl = {0368.14009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CM_1977__34_3_225_0/}
}
TY - JOUR AU - Lubkin, Saul TI - Generalization of $p$-adic cohomology ; bounded Witt vectors. A canonical lifting of a variety in characteristic $p \ne 0$ back to characteristic zero JO - Compositio Mathematica PY - 1977 SP - 225 EP - 277 VL - 34 IS - 3 PB - Noordhoff International Publishing UR - http://geodesic.mathdoc.fr/item/CM_1977__34_3_225_0/ LA - en ID - CM_1977__34_3_225_0 ER -
%0 Journal Article %A Lubkin, Saul %T Generalization of $p$-adic cohomology ; bounded Witt vectors. A canonical lifting of a variety in characteristic $p \ne 0$ back to characteristic zero %J Compositio Mathematica %D 1977 %P 225-277 %V 34 %N 3 %I Noordhoff International Publishing %U http://geodesic.mathdoc.fr/item/CM_1977__34_3_225_0/ %G en %F CM_1977__34_3_225_0
Lubkin, Saul. Generalization of $p$-adic cohomology ; bounded Witt vectors. A canonical lifting of a variety in characteristic $p \ne 0$ back to characteristic zero. Compositio Mathematica, Tome 34 (1977) no. 3, pp. 225-277. http://geodesic.mathdoc.fr/item/CM_1977__34_3_225_0/
