Dihedral-like constructions of automorphic loops
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 3, pp. 269-284 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Automorphic loops are loops in which all inner mappings are automorphisms. We study a generalization of the dihedral construction for groups. Namely, if $(G,+)$ is an abelian group, $m\geq 1$ and $\alpha \in \operatorname{Aut}(G)$, let $\operatorname{Dih} (m,G,\alpha )$ be defined on $\mathbb Z_m\times G$ by \begin{equation*} (i,u)(j,v) = (i\oplus j,\,((-1)^{j}u + v)\alpha^{ij}). \end{equation*} The resulting loop is automorphic if and only if $m=2$ or ($\alpha^2=1$ and $m$ is even). The case $m=2$ was introduced by Kinyon, Kunen, Phillips, and Vojtěchovský. We present several structural results about the automorphic dihedral loops in both cases.
Automorphic loops are loops in which all inner mappings are automorphisms. We study a generalization of the dihedral construction for groups. Namely, if $(G,+)$ is an abelian group, $m\geq 1$ and $\alpha \in \operatorname{Aut}(G)$, let $\operatorname{Dih} (m,G,\alpha )$ be defined on $\mathbb Z_m\times G$ by \begin{equation*} (i,u)(j,v) = (i\oplus j,\,((-1)^{j}u + v)\alpha^{ij}). \end{equation*} The resulting loop is automorphic if and only if $m=2$ or ($\alpha^2=1$ and $m$ is even). The case $m=2$ was introduced by Kinyon, Kunen, Phillips, and Vojtěchovský. We present several structural results about the automorphic dihedral loops in both cases.
Classification : 20N05
Keywords: dihedral automorphic loop; automorphic loop; inner mapping group; multiplication group; nucleus; commutant; center; commutator; associator subloop; derived subloop
@article{CMUC_2014_55_3_a1,
     author = {Aboras, Mouna},
     title = {Dihedral-like constructions of automorphic loops},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {269--284},
     year = {2014},
     volume = {55},
     number = {3},
     mrnumber = {3225610},
     zbl = {06391543},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2014_55_3_a1/}
}
TY  - JOUR
AU  - Aboras, Mouna
TI  - Dihedral-like constructions of automorphic loops
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2014
SP  - 269
EP  - 284
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_2014_55_3_a1/
LA  - en
ID  - CMUC_2014_55_3_a1
ER  - 
%0 Journal Article
%A Aboras, Mouna
%T Dihedral-like constructions of automorphic loops
%J Commentationes Mathematicae Universitatis Carolinae
%D 2014
%P 269-284
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_2014_55_3_a1/
%G en
%F CMUC_2014_55_3_a1
Aboras, Mouna. Dihedral-like constructions of automorphic loops. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 3, pp. 269-284. http://geodesic.mathdoc.fr/item/CMUC_2014_55_3_a1/