A note on the intersection ideal $\mathcal M\cap \mathcal N$
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 437-445
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove among other theorems that it is consistent with $ZFC$ that there exists a set $X\subseteq 2^\omega$ which is not meager additive, yet it satisfies the following property: for each $F_\sigma$ measure zero set $F$, $X+F$ belongs to the intersection ideal $\mathcal M\cap \mathcal N$.
We prove among other theorems that it is consistent with $ZFC$ that there exists a set $X\subseteq 2^\omega$ which is not meager additive, yet it satisfies the following property: for each $F_\sigma$ measure zero set $F$, $X+F$ belongs to the intersection ideal $\mathcal M\cap \mathcal N$.
Classification :
03E05, 03E17
Keywords: $F_\sigma$ measure zero sets; intersection ideal $\mathcal M\cap \mathcal N$; meager additive sets; sets perfectly meager in the transitive sense; $\gamma$-sets
Keywords: $F_\sigma$ measure zero sets; intersection ideal $\mathcal M\cap \mathcal N$; meager additive sets; sets perfectly meager in the transitive sense; $\gamma$-sets
@article{CMUC_2013_54_3_a9,
author = {Weiss, Tomasz},
title = {A note on the intersection ideal $\mathcal M\cap \mathcal N$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {437--445},
year = {2013},
volume = {54},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013_54_3_a9/}
}
Weiss, Tomasz. A note on the intersection ideal $\mathcal M\cap \mathcal N$. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 437-445. http://geodesic.mathdoc.fr/item/CMUC_2013_54_3_a9/