Continua with unique symmetric product
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 397-406
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $X$ be a metric continuum. Let $F_{n}(X)$ denote the hyperspace of nonempty subsets of $X$ with at most $n$ elements. We say that the continuum $X$ has unique hyperspace $F_{n}(X)$ provided that the following implication holds: if $Y$ is a continuum and $F_{n}(X)$ is homeomorphic to $F_{n}(Y)$, then $X$ is homeomorphic to $Y$. In this paper we prove the following results: (1) if $X$ is an indecomposable continuum such that each nondegenerate proper subcontinuum of $X$ is an arc, then $X$ has unique hyperspace $F_{2}(X)$, and (2) let $X$ be an arcwise connected continuum for which there exists a unique point $v\in X$ such that $v$ is the vertex of a simple triod. Then $X$ has unique hyperspace $F_{2}(X)$.
Let $X$ be a metric continuum. Let $F_{n}(X)$ denote the hyperspace of nonempty subsets of $X$ with at most $n$ elements. We say that the continuum $X$ has unique hyperspace $F_{n}(X)$ provided that the following implication holds: if $Y$ is a continuum and $F_{n}(X)$ is homeomorphic to $F_{n}(Y)$, then $X$ is homeomorphic to $Y$. In this paper we prove the following results: (1) if $X$ is an indecomposable continuum such that each nondegenerate proper subcontinuum of $X$ is an arc, then $X$ has unique hyperspace $F_{2}(X)$, and (2) let $X$ be an arcwise connected continuum for which there exists a unique point $v\in X$ such that $v$ is the vertex of a simple triod. Then $X$ has unique hyperspace $F_{2}(X)$.
Classification :
54B20, 54F15
Keywords: arc continuum; continuum; indecomposable; symmetric product; unique hyperspace
Keywords: arc continuum; continuum; indecomposable; symmetric product; unique hyperspace
@article{CMUC_2013_54_3_a6,
author = {Anaya, Jos\'e G. and Casta\~neda-Alvarado, Enrique and Illanes, Alejandro},
title = {Continua with unique symmetric product},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {397--406},
year = {2013},
volume = {54},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013_54_3_a6/}
}
TY - JOUR AU - Anaya, José G. AU - Castañeda-Alvarado, Enrique AU - Illanes, Alejandro TI - Continua with unique symmetric product JO - Commentationes Mathematicae Universitatis Carolinae PY - 2013 SP - 397 EP - 406 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_2013_54_3_a6/ LA - en ID - CMUC_2013_54_3_a6 ER -
Anaya, José G.; Castañeda-Alvarado, Enrique; Illanes, Alejandro. Continua with unique symmetric product. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 397-406. http://geodesic.mathdoc.fr/item/CMUC_2013_54_3_a6/