Universal meager $F_\sigma$-sets in locally compact manifolds
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 179-188
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In each manifold $M$ modeled on a finite or infinite dimensional cube $[0,1]^n$, $n\leq \omega $, we construct a meager $F_\sigma$-subset $X\subset M$ which is universal meager in the sense that for each meager subset $A\subset M$ there is a homeomorphism $h:M\to M$ such that $h(A)\subset X$. We also prove that any two universal meager $F_\sigma$-sets in $M$ are ambiently homeomorphic.
In each manifold $M$ modeled on a finite or infinite dimensional cube $[0,1]^n$, $n\leq \omega $, we construct a meager $F_\sigma$-subset $X\subset M$ which is universal meager in the sense that for each meager subset $A\subset M$ there is a homeomorphism $h:M\to M$ such that $h(A)\subset X$. We also prove that any two universal meager $F_\sigma$-sets in $M$ are ambiently homeomorphic.
Classification :
54F65, 57N20, 57N45
Keywords: universal nowhere dense subset; Sierpiński carpet; Menger cube; Hilbert cube manifold; $n$-manifold; tame ball; tame decomposition
Keywords: universal nowhere dense subset; Sierpiński carpet; Menger cube; Hilbert cube manifold; $n$-manifold; tame ball; tame decomposition
@article{CMUC_2013_54_2_a4,
author = {Banakh, Taras and Repov\v{s}, Du\v{s}an},
title = {Universal meager $F_\sigma$-sets in locally compact manifolds},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {179--188},
year = {2013},
volume = {54},
number = {2},
mrnumber = {3067702},
zbl = {06221261},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013_54_2_a4/}
}
TY - JOUR AU - Banakh, Taras AU - Repovš, Dušan TI - Universal meager $F_\sigma$-sets in locally compact manifolds JO - Commentationes Mathematicae Universitatis Carolinae PY - 2013 SP - 179 EP - 188 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_2013_54_2_a4/ LA - en ID - CMUC_2013_54_2_a4 ER -
Banakh, Taras; Repovš, Dušan. Universal meager $F_\sigma$-sets in locally compact manifolds. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 179-188. http://geodesic.mathdoc.fr/item/CMUC_2013_54_2_a4/