Thinness and non-tangential limit associated to coupled PDE
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 41-51
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we study the reduit, the thinness and the non-tangential limit associated to a harmonic structure given by coupled partial differential equations. In particular, we obtain such results for biharmonic equation (i.e. $\triangle^{2}\varphi= 0$) and equations of $\triangle^{2}\varphi= \varphi$ type.
In this paper, we study the reduit, the thinness and the non-tangential limit associated to a harmonic structure given by coupled partial differential equations. In particular, we obtain such results for biharmonic equation (i.e. $\triangle^{2}\varphi= 0$) and equations of $\triangle^{2}\varphi= \varphi$ type.
Classification :
31B10, 31B30, 31C35, 60J50
Keywords: thinness; non-tangential limit; Martin boundary; biharmonic functions; coupled partial differential equations
Keywords: thinness; non-tangential limit; Martin boundary; biharmonic functions; coupled partial differential equations
@article{CMUC_2013_54_1_a3,
author = {Benyaiche, Allami and Ghiate, Salma},
title = {Thinness and non-tangential limit associated to coupled {PDE}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {41--51},
year = {2013},
volume = {54},
number = {1},
mrnumber = {3038070},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013_54_1_a3/}
}
TY - JOUR AU - Benyaiche, Allami AU - Ghiate, Salma TI - Thinness and non-tangential limit associated to coupled PDE JO - Commentationes Mathematicae Universitatis Carolinae PY - 2013 SP - 41 EP - 51 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_2013_54_1_a3/ LA - en ID - CMUC_2013_54_1_a3 ER -
Benyaiche, Allami; Ghiate, Salma. Thinness and non-tangential limit associated to coupled PDE. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 41-51. http://geodesic.mathdoc.fr/item/CMUC_2013_54_1_a3/