Reproducing kernels for Dunkl polyharmonic polynomials
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 37-50 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we compute explicitly the reproducing kernel of the space of homogeneous polynomials of degree $n$ and Dunkl polyharmonic of degree $m$, i.e. $\Delta_{k}^{m}u=0$, $m\in \mathbb{N}\setminus\{0\}$, where $\Delta_{k}$ is the Dunkl Laplacian and we study the convergence of the orthogonal series of Dunkl polyharmonic homogeneous polynomials.
In this paper, we compute explicitly the reproducing kernel of the space of homogeneous polynomials of degree $n$ and Dunkl polyharmonic of degree $m$, i.e. $\Delta_{k}^{m}u=0$, $m\in \mathbb{N}\setminus\{0\}$, where $\Delta_{k}$ is the Dunkl Laplacian and we study the convergence of the orthogonal series of Dunkl polyharmonic homogeneous polynomials.
Classification : 31B30, 33C55
Keywords: Dunkl Laplacian; reproducing kernel
@article{CMUC_2012_53_1_a2,
     author = {Touahri, Kamel},
     title = {Reproducing kernels for {Dunkl} polyharmonic polynomials},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {37--50},
     year = {2012},
     volume = {53},
     number = {1},
     mrnumber = {2880909},
     zbl = {1249.33011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2012_53_1_a2/}
}
TY  - JOUR
AU  - Touahri, Kamel
TI  - Reproducing kernels for Dunkl polyharmonic polynomials
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2012
SP  - 37
EP  - 50
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_2012_53_1_a2/
LA  - en
ID  - CMUC_2012_53_1_a2
ER  - 
%0 Journal Article
%A Touahri, Kamel
%T Reproducing kernels for Dunkl polyharmonic polynomials
%J Commentationes Mathematicae Universitatis Carolinae
%D 2012
%P 37-50
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_2012_53_1_a2/
%G en
%F CMUC_2012_53_1_a2
Touahri, Kamel. Reproducing kernels for Dunkl polyharmonic polynomials. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 37-50. http://geodesic.mathdoc.fr/item/CMUC_2012_53_1_a2/