More on $\kappa$-Ohio completeness
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 551-559
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study closed subspaces of $\kappa$-Ohio complete spaces and, for $\kappa$ uncountable cardinal, we prove a characterization for them. We then investigate the behaviour of products of $\kappa$-Ohio complete spaces. We prove that, if the cardinal $\kappa^+$ is endowed with either the order or the discrete topology, the space $(\kappa^+)^{\kappa^+}$ is not $\kappa$-Ohio complete. As a consequence, we show that, if $\kappa$ is less than the first weakly inaccessible cardinal, then neither the space $\omega^{\kappa^+}$, nor the space $\mathbb{R}^{\kappa^+}$ is $\kappa$-Ohio complete.
We study closed subspaces of $\kappa$-Ohio complete spaces and, for $\kappa$ uncountable cardinal, we prove a characterization for them. We then investigate the behaviour of products of $\kappa$-Ohio complete spaces. We prove that, if the cardinal $\kappa^+$ is endowed with either the order or the discrete topology, the space $(\kappa^+)^{\kappa^+}$ is not $\kappa$-Ohio complete. As a consequence, we show that, if $\kappa$ is less than the first weakly inaccessible cardinal, then neither the space $\omega^{\kappa^+}$, nor the space $\mathbb{R}^{\kappa^+}$ is $\kappa$-Ohio complete.
Classification :
54B05, 54B10, 54D35
Keywords: $\kappa$-Ohio complete; compactification; subspace; product
Keywords: $\kappa$-Ohio complete; compactification; subspace; product
@article{CMUC_2011_52_4_a6,
author = {Basile, D.},
title = {More on $\kappa${-Ohio} completeness},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {551--559},
year = {2011},
volume = {52},
number = {4},
mrnumber = {2863998},
zbl = {1249.54022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011_52_4_a6/}
}
Basile, D. More on $\kappa$-Ohio completeness. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 551-559. http://geodesic.mathdoc.fr/item/CMUC_2011_52_4_a6/