Hyperplane section ${\mathbb{O}\mathbb{P}}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm{F_4/P_4}$
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 535-549
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove that the exceptional complex Lie group ${\mathrm{F}_4}$ has a transitive action on the hyperplane section of the complex Cayley plane ${\mathbb{O}\mathbb{P}}^2$. Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of ${\mathrm{Spin}}(9,\mathbb{C})\leq {\mathrm{F}_4}$. Moreover, we identify the stabilizer of the ${\mathrm{F}_4}$-action as a parabolic subgroup ${\mathrm{P}_4}$ (with Levi factor $\mathrm{B_3T_1}$) of the complex Lie group ${\mathrm{F}_4}$. In the real case we obtain an analogous realization of ${\mathrm{F}_4}^{(-20)}/\P$.
We prove that the exceptional complex Lie group ${\mathrm{F}_4}$ has a transitive action on the hyperplane section of the complex Cayley plane ${\mathbb{O}\mathbb{P}}^2$. Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of ${\mathrm{Spin}}(9,\mathbb{C})\leq {\mathrm{F}_4}$. Moreover, we identify the stabilizer of the ${\mathrm{F}_4}$-action as a parabolic subgroup ${\mathrm{P}_4}$ (with Levi factor $\mathrm{B_3T_1}$) of the complex Lie group ${\mathrm{F}_4}$. In the real case we obtain an analogous realization of ${\mathrm{F}_4}^{(-20)}/\P$.
Classification :
14M17, 32M12
Keywords: Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi varieties; hyperplane section; exceptional geometry
Keywords: Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi varieties; hyperplane section; exceptional geometry
@article{CMUC_2011_52_4_a5,
author = {Pazourek, Karel and Tu\v{c}ek, V{\'\i}t and Franek, Peter},
title = {Hyperplane section ${\mathbb{O}\mathbb{P}}^2_0$ of the complex {Cayley} plane as the homogeneous space $\mathrm{F_4/P_4}$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {535--549},
year = {2011},
volume = {52},
number = {4},
mrnumber = {2863997},
zbl = {1249.32019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011_52_4_a5/}
}
TY - JOUR
AU - Pazourek, Karel
AU - Tuček, Vít
AU - Franek, Peter
TI - Hyperplane section ${\mathbb{O}\mathbb{P}}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm{F_4/P_4}$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
SP - 535
EP - 549
VL - 52
IS - 4
UR - http://geodesic.mathdoc.fr/item/CMUC_2011_52_4_a5/
LA - en
ID - CMUC_2011_52_4_a5
ER -
%0 Journal Article
%A Pazourek, Karel
%A Tuček, Vít
%A Franek, Peter
%T Hyperplane section ${\mathbb{O}\mathbb{P}}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm{F_4/P_4}$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 535-549
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_2011_52_4_a5/
%G en
%F CMUC_2011_52_4_a5
Pazourek, Karel; Tuček, Vít; Franek, Peter. Hyperplane section ${\mathbb{O}\mathbb{P}}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm{F_4/P_4}$. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 535-549. http://geodesic.mathdoc.fr/item/CMUC_2011_52_4_a5/