Manifold-valued generalized functions in full Colombeau spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 519-534
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We introduce the notion of generalized function taking values in a smooth manifold into the setting of full Colombeau algebras. After deriving a number of characterization results we also introduce a corresponding concept of generalized vector bundle homomorphisms and, based on this, provide a definition of tangent map for such generalized functions.
We introduce the notion of generalized function taking values in a smooth manifold into the setting of full Colombeau algebras. After deriving a number of characterization results we also introduce a corresponding concept of generalized vector bundle homomorphisms and, based on this, provide a definition of tangent map for such generalized functions.
Classification :
26E15, 46F30, 46T30
Keywords: algebras of generalized functions; manifold-valued generalized functions; full Colombeau algebras
Keywords: algebras of generalized functions; manifold-valued generalized functions; full Colombeau algebras
@article{CMUC_2011_52_4_a4,
author = {Kunzinger, Michael and Nigsch, Eduard},
title = {Manifold-valued generalized functions in full {Colombeau} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {519--534},
year = {2011},
volume = {52},
number = {4},
mrnumber = {2863996},
zbl = {1249.46042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011_52_4_a4/}
}
TY - JOUR AU - Kunzinger, Michael AU - Nigsch, Eduard TI - Manifold-valued generalized functions in full Colombeau spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2011 SP - 519 EP - 534 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_2011_52_4_a4/ LA - en ID - CMUC_2011_52_4_a4 ER -
Kunzinger, Michael; Nigsch, Eduard. Manifold-valued generalized functions in full Colombeau spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 519-534. http://geodesic.mathdoc.fr/item/CMUC_2011_52_4_a4/