Hom-Akivis algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 485-500
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms and that the class of Hom-Akivis algebras is closed under self-morphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-Malcev algebra.
Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms and that the class of Hom-Akivis algebras is closed under self-morphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-Malcev algebra.
Classification :
17A30, 17D10, 17D99
Keywords: Akivis algebra; Hom-associative algebra; Hom-Lie algebra; Hom-Akivis algebra; Hom-Malcev algebra
Keywords: Akivis algebra; Hom-associative algebra; Hom-Lie algebra; Hom-Akivis algebra; Hom-Malcev algebra
@article{CMUC_2011_52_4_a1,
author = {Issa, A. Nourou},
title = {Hom-Akivis algebras},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {485--500},
year = {2011},
volume = {52},
number = {4},
mrnumber = {2863993},
zbl = {1249.17005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011_52_4_a1/}
}
Issa, A. Nourou. Hom-Akivis algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 485-500. http://geodesic.mathdoc.fr/item/CMUC_2011_52_4_a1/