Uncountably many solutions of a system of third order nonlinear differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 369-389
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we aim to study the global solvability of the following system of third order nonlinear neutral delay differential equations $$ \aligned \frac{d}{dt}\Big\{r_i(t)\frac{d}{dt}\Big[\lambda_i(t)\frac{d}{dt} \Big(x_i(t)-f_i(t,x_1(t-\sigma_{i1}),x_2(t-\sigma_{i2}), x_3(t-\sigma_{i3}))\Big)\Big]\Big\} \cr \qquad \quad + \frac{d}{dt}\Big[r_i(t)\frac{d}{dt}g_i(t,x_1(p_{i1}(t)), x_2(p_{i2}(t)),x_3(p_{i3}(t)))\Big] \cr \qquad \quad + \frac{d}{dt}h_i(t,x_1(q_{i1}(t)),x_2(q_{i2}(t)), x_3(q_{i3}(t))) \cr = l_i(t,x_1(\eta_{i1}(t)),x_2(\eta_{i2}(t)),x_3(\eta_{i3}(t))), \quad t\ge t_0,\quad i\in \{1,2,3\} \endaligned $$ in the following bounded closed and convex set $$ \aligned \Omega(a,b)=\Big\{x(t)=\big(x_1(t),x_2(t),x_3(t)\big)\in C([t_0,+\infty),\Bbb{R}^3):a(t)\le x_i(t)\le b(t), \qquad \forall\, t\geq t_0, i\in\{1,2,3\}\Big\}, \qquad \endaligned $$ where $\sigma_{ij}>0$, $r_i,\lambda_i,a,b\in C([t_0,+\infty),\Bbb{R}^{+})$, $f_i,g_i,h_i,l_i\in C([t_0,+\infty)\times\Bbb{R}^3,\Bbb{R})$, \newline $p_{ij},q_{ij},\eta_{ij}\in C([t_0,+\infty),\Bbb{R})$ for $i,j\in\{1,2,3\}$. By applying the Krasnoselskii fixed point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and the Banach contraction principle, four existence results of uncountably many bounded positive solutions of the system are established.
In this paper, we aim to study the global solvability of the following system of third order nonlinear neutral delay differential equations $$ \aligned \frac{d}{dt}\Big\{r_i(t)\frac{d}{dt}\Big[\lambda_i(t)\frac{d}{dt} \Big(x_i(t)-f_i(t,x_1(t-\sigma_{i1}),x_2(t-\sigma_{i2}), x_3(t-\sigma_{i3}))\Big)\Big]\Big\} \cr \qquad \quad + \frac{d}{dt}\Big[r_i(t)\frac{d}{dt}g_i(t,x_1(p_{i1}(t)), x_2(p_{i2}(t)),x_3(p_{i3}(t)))\Big] \cr \qquad \quad + \frac{d}{dt}h_i(t,x_1(q_{i1}(t)),x_2(q_{i2}(t)), x_3(q_{i3}(t))) \cr = l_i(t,x_1(\eta_{i1}(t)),x_2(\eta_{i2}(t)),x_3(\eta_{i3}(t))), \quad t\ge t_0,\quad i\in \{1,2,3\} \endaligned $$ in the following bounded closed and convex set $$ \aligned \Omega(a,b)=\Big\{x(t)=\big(x_1(t),x_2(t),x_3(t)\big)\in C([t_0,+\infty),\Bbb{R}^3):a(t)\le x_i(t)\le b(t), \qquad \forall\, t\geq t_0, i\in\{1,2,3\}\Big\}, \qquad \endaligned $$ where $\sigma_{ij}>0$, $r_i,\lambda_i,a,b\in C([t_0,+\infty),\Bbb{R}^{+})$, $f_i,g_i,h_i,l_i\in C([t_0,+\infty)\times\Bbb{R}^3,\Bbb{R})$, \newline $p_{ij},q_{ij},\eta_{ij}\in C([t_0,+\infty),\Bbb{R})$ for $i,j\in\{1,2,3\}$. By applying the Krasnoselskii fixed point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and the Banach contraction principle, four existence results of uncountably many bounded positive solutions of the system are established.
Classification :
34C10, 34K15
Keywords: system of third order nonlinear neutral delay differential equations; contraction mapping; completely continuous mapping; condensing mapping; uncountably many bounded positive solutions
Keywords: system of third order nonlinear neutral delay differential equations; contraction mapping; completely continuous mapping; condensing mapping; uncountably many bounded positive solutions
@article{CMUC_2011_52_3_a4,
author = {Liu, Min},
title = {Uncountably many solutions of a system of third order nonlinear differential equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {369--389},
year = {2011},
volume = {52},
number = {3},
mrnumber = {2843230},
zbl = {1249.34199},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011_52_3_a4/}
}
TY - JOUR AU - Liu, Min TI - Uncountably many solutions of a system of third order nonlinear differential equations JO - Commentationes Mathematicae Universitatis Carolinae PY - 2011 SP - 369 EP - 389 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_2011_52_3_a4/ LA - en ID - CMUC_2011_52_3_a4 ER -
Liu, Min. Uncountably many solutions of a system of third order nonlinear differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 369-389. http://geodesic.mathdoc.fr/item/CMUC_2011_52_3_a4/