Monotone measures with bad tangential behavior in the plane
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 317-339
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that for every $\varepsilon > 0$, there is a set $A\subset \mathbb R^2$ such that $\mathcal H^1 \llcorner A$ is a monotone measure, the corresponding tangent measures at the origin are not unique and $\mathcal H^1 \llcorner A$ has the $1$-dimensional density between $1$ and $3+\varepsilon $ everywhere on the support.
We show that for every $\varepsilon > 0$, there is a set $A\subset \mathbb R^2$ such that $\mathcal H^1 \llcorner A$ is a monotone measure, the corresponding tangent measures at the origin are not unique and $\mathcal H^1 \llcorner A$ has the $1$-dimensional density between $1$ and $3+\varepsilon $ everywhere on the support.
@article{CMUC_2011_52_3_a0,
author = {\v{C}ern\'y, Robert and Kol\'a\v{r}, Jan and Rokyta, Mirko},
title = {Monotone measures with bad tangential behavior in the plane},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {317--339},
year = {2011},
volume = {52},
number = {3},
mrnumber = {2843226},
zbl = {1249.49019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011_52_3_a0/}
}
TY - JOUR AU - Černý, Robert AU - Kolář, Jan AU - Rokyta, Mirko TI - Monotone measures with bad tangential behavior in the plane JO - Commentationes Mathematicae Universitatis Carolinae PY - 2011 SP - 317 EP - 339 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_2011_52_3_a0/ LA - en ID - CMUC_2011_52_3_a0 ER -
Černý, Robert; Kolář, Jan; Rokyta, Mirko. Monotone measures with bad tangential behavior in the plane. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 317-339. http://geodesic.mathdoc.fr/item/CMUC_2011_52_3_a0/