On meager function spaces, network character and meager convergence in topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 2, pp. 273-281
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For a non-isolated point $x$ of a topological space $X$ let $\mathrm{nw}_\chi (x)$ be the smallest cardinality of a family $\mathcal N$ of infinite subsets of $X$ such that each neighborhood $O(x)\subset X$ of $x$ contains a set $N\in \mathcal N$. We prove that
(a) each infinite compact Hausdorff space $X$ contains a non-isolated point $x$ with $\mathrm{nw}_\chi (x)=\aleph_0$;
(b) for each point $x\in X$ with $\mathrm{nw}_\chi (x)=\aleph_0$ there is an injective sequence $(x_n)_{n\in \omega }$ in $X$ that $\mathcal F$-converges to $x$ for some meager filter $\mathcal F$ on $\omega $;
(c) if a functionally Hausdorff space $X$ contains an $\mathcal F$-convergent injective sequence for some meager filter $\mathcal F$, then for every path-connected space $Y$ that contains two non-empty open sets with disjoint closures, the function space $C_p(X,Y)$ is meager.
Also we investigate properties of filters $\mathcal F$ admitting an injective $\mathcal F$-convergent sequence in $\beta \omega $.
For a non-isolated point $x$ of a topological space $X$ let $\mathrm{nw}_\chi (x)$ be the smallest cardinality of a family $\mathcal N$ of infinite subsets of $X$ such that each neighborhood $O(x)\subset X$ of $x$ contains a set $N\in \mathcal N$. We prove that
(a) each infinite compact Hausdorff space $X$ contains a non-isolated point $x$ with $\mathrm{nw}_\chi (x)=\aleph_0$;
(b) for each point $x\in X$ with $\mathrm{nw}_\chi (x)=\aleph_0$ there is an injective sequence $(x_n)_{n\in \omega }$ in $X$ that $\mathcal F$-converges to $x$ for some meager filter $\mathcal F$ on $\omega $;
(c) if a functionally Hausdorff space $X$ contains an $\mathcal F$-convergent injective sequence for some meager filter $\mathcal F$, then for every path-connected space $Y$ that contains two non-empty open sets with disjoint closures, the function space $C_p(X,Y)$ is meager.
Also we investigate properties of filters $\mathcal F$ admitting an injective $\mathcal F$-convergent sequence in $\beta \omega $.
Classification :
54A20, 54C35, 54E52
Keywords: network character; meager convergent sequence; meager filter; meager space; function space
Keywords: network character; meager convergent sequence; meager filter; meager space; function space
@article{CMUC_2011_52_2_a6,
author = {Banakh, Taras and Mykhaylyuk, Volodymyr and Zdomskyy, Lyubomyr},
title = {On meager function spaces, network character and meager convergence in topological spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {273--281},
year = {2011},
volume = {52},
number = {2},
mrnumber = {2849049},
zbl = {1240.54018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011_52_2_a6/}
}
TY - JOUR AU - Banakh, Taras AU - Mykhaylyuk, Volodymyr AU - Zdomskyy, Lyubomyr TI - On meager function spaces, network character and meager convergence in topological spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2011 SP - 273 EP - 281 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_2011_52_2_a6/ LA - en ID - CMUC_2011_52_2_a6 ER -
%0 Journal Article %A Banakh, Taras %A Mykhaylyuk, Volodymyr %A Zdomskyy, Lyubomyr %T On meager function spaces, network character and meager convergence in topological spaces %J Commentationes Mathematicae Universitatis Carolinae %D 2011 %P 273-281 %V 52 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_2011_52_2_a6/ %G en %F CMUC_2011_52_2_a6
Banakh, Taras; Mykhaylyuk, Volodymyr; Zdomskyy, Lyubomyr. On meager function spaces, network character and meager convergence in topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 2, pp. 273-281. http://geodesic.mathdoc.fr/item/CMUC_2011_52_2_a6/