Berezin-Weyl quantization for Cartan motion groups
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 127-137
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].
We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].
Classification :
22E15, 22E45, 22E46, 22E70, 81R05, 81S10
Keywords: semidirect product; Cartan motion group; unitary representation; semisimple Lie group; symplectomorphism; coadjoint orbit; Weyl quantization; Berezin quantization
Keywords: semidirect product; Cartan motion group; unitary representation; semisimple Lie group; symplectomorphism; coadjoint orbit; Weyl quantization; Berezin quantization
@article{CMUC_2011_52_1_a8,
author = {Cahen, Benjamin},
title = {Berezin-Weyl quantization for {Cartan} motion groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {127--137},
year = {2011},
volume = {52},
number = {1},
mrnumber = {2828363},
zbl = {1240.22010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011_52_1_a8/}
}
Cahen, Benjamin. Berezin-Weyl quantization for Cartan motion groups. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/CMUC_2011_52_1_a8/