The Kadison problem on a class of commutative Banach algebras with closed cone
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 631-637
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The main result of the paper characterizes continuous local derivations on a class of commutative Banach algebra $A$ that all of its squares are positive and satisfying the following property: Every continuous bilinear map $\Phi $ from $A\times A$ into an arbitrary Banach space $B$ such that $\Phi(a,b)=0$ whenever $ab=0$, satisfies the condition $\Phi (ab,c)=\Phi(a,bc)$ for all $a,b,c\in A$.
The main result of the paper characterizes continuous local derivations on a class of commutative Banach algebra $A$ that all of its squares are positive and satisfying the following property: Every continuous bilinear map $\Phi $ from $A\times A$ into an arbitrary Banach space $B$ such that $\Phi(a,b)=0$ whenever $ab=0$, satisfies the condition $\Phi (ab,c)=\Phi(a,bc)$ for all $a,b,c\in A$.
@article{CMUC_2010_51_4_a7,
author = {Toumi, M. A.},
title = {The {Kadison} problem on a class of commutative {Banach} algebras with closed cone},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {631--637},
year = {2010},
volume = {51},
number = {4},
mrnumber = {2858266},
zbl = {1224.06035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2010_51_4_a7/}
}
TY - JOUR AU - Toumi, M. A. TI - The Kadison problem on a class of commutative Banach algebras with closed cone JO - Commentationes Mathematicae Universitatis Carolinae PY - 2010 SP - 631 EP - 637 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_2010_51_4_a7/ LA - en ID - CMUC_2010_51_4_a7 ER -
Toumi, M. A. The Kadison problem on a class of commutative Banach algebras with closed cone. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 631-637. http://geodesic.mathdoc.fr/item/CMUC_2010_51_4_a7/