Infinite dimensional linear groups with a large family of $G$-invariant subspaces
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 551-558
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $F$ be a field, $A$ be a vector space over $F$, $\operatorname{GL}(F,A)$ be the group of all automorphisms of the vector space $A$. A subspace $B$ is called almost $G$-invariant, if $\dim _{F}(B/\operatorname{Core}_{G}(B))$ is finite. In the current article, we begin the study of those subgroups $G$ of $\operatorname{GL}(F,A)$ for which every subspace of $A$ is almost $G$-invariant. More precisely, we consider the case when $G$ is a periodic group. We prove that in this case $A$ includes a $G$-invariant subspace $B$ of finite codimension whose subspaces are $G$-invariant.
Let $F$ be a field, $A$ be a vector space over $F$, $\operatorname{GL}(F,A)$ be the group of all automorphisms of the vector space $A$. A subspace $B$ is called almost $G$-invariant, if $\dim _{F}(B/\operatorname{Core}_{G}(B))$ is finite. In the current article, we begin the study of those subgroups $G$ of $\operatorname{GL}(F,A)$ for which every subspace of $A$ is almost $G$-invariant. More precisely, we consider the case when $G$ is a periodic group. We prove that in this case $A$ includes a $G$-invariant subspace $B$ of finite codimension whose subspaces are $G$-invariant.
Classification :
15A03, 20F16, 20F29
Keywords: vector space; linear groups; periodic groups; soluble groups; invariant subspaces
Keywords: vector space; linear groups; periodic groups; soluble groups; invariant subspaces
@article{CMUC_2010_51_4_a0,
author = {Kurdachenko, L. A. and Sadovnichenko, A. V. and Subbotin, I. Ya.},
title = {Infinite dimensional linear groups with a large family of $G$-invariant subspaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {551--558},
year = {2010},
volume = {51},
number = {4},
mrnumber = {2858259},
zbl = {1224.15002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2010_51_4_a0/}
}
TY - JOUR AU - Kurdachenko, L. A. AU - Sadovnichenko, A. V. AU - Subbotin, I. Ya. TI - Infinite dimensional linear groups with a large family of $G$-invariant subspaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2010 SP - 551 EP - 558 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_2010_51_4_a0/ LA - en ID - CMUC_2010_51_4_a0 ER -
%0 Journal Article %A Kurdachenko, L. A. %A Sadovnichenko, A. V. %A Subbotin, I. Ya. %T Infinite dimensional linear groups with a large family of $G$-invariant subspaces %J Commentationes Mathematicae Universitatis Carolinae %D 2010 %P 551-558 %V 51 %N 4 %U http://geodesic.mathdoc.fr/item/CMUC_2010_51_4_a0/ %G en %F CMUC_2010_51_4_a0
Kurdachenko, L. A.; Sadovnichenko, A. V.; Subbotin, I. Ya. Infinite dimensional linear groups with a large family of $G$-invariant subspaces. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 551-558. http://geodesic.mathdoc.fr/item/CMUC_2010_51_4_a0/