Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 3, pp. 441-451
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It will be proved that if $N$ is a bounded nilpotent operator on a Banach space $X$ of order $k+1$, where $k\geq 1$ is an integer, then the $\gamma$-th order Cesàro mean $C_{t}^{\gamma}:=\gamma t^{-\gamma}\int_{0}^{t}(t-s)^{\gamma-1}T(s)\,ds$ and Abel mean $A_{\lambda}:=\lambda\int_{0}^{\infty}e^{-\lambda s}T(s)\,ds$ of the uniformly continuous semigroup $(T(t))_{t\geq 0}$ of bounded linear operators on $X$ generated by $iaI+N$, where $0\neq a\in \mathbb{R}$, satisfy that (a) $\|C_{t}^{\gamma}\|\sim t^{k-\gamma}\;(t\to\infty)$ for all $0 \gamma\leq k+1$; (b) $\|C_{t}^{\gamma}\|\sim t^{-1}\;(t\to\infty)$ for all $\gamma\geq k+1$; (c) $\|A_{\lambda}\|\sim \lambda\;(\lambda\downarrow 0)$. A similar result will be also proved for the uniformly continuous cosine function $(C(t))_{t\geq 0}$ of bounded linear operators on $X$ generated by $(iaI+N)^{2}$.
It will be proved that if $N$ is a bounded nilpotent operator on a Banach space $X$ of order $k+1$, where $k\geq 1$ is an integer, then the $\gamma$-th order Cesàro mean $C_{t}^{\gamma}:=\gamma t^{-\gamma}\int_{0}^{t}(t-s)^{\gamma-1}T(s)\,ds$ and Abel mean $A_{\lambda}:=\lambda\int_{0}^{\infty}e^{-\lambda s}T(s)\,ds$ of the uniformly continuous semigroup $(T(t))_{t\geq 0}$ of bounded linear operators on $X$ generated by $iaI+N$, where $0\neq a\in \mathbb{R}$, satisfy that (a) $\|C_{t}^{\gamma}\|\sim t^{k-\gamma}\;(t\to\infty)$ for all $0 \gamma\leq k+1$; (b) $\|C_{t}^{\gamma}\|\sim t^{-1}\;(t\to\infty)$ for all $\gamma\geq k+1$; (c) $\|A_{\lambda}\|\sim \lambda\;(\lambda\downarrow 0)$. A similar result will be also proved for the uniformly continuous cosine function $(C(t))_{t\geq 0}$ of bounded linear operators on $X$ generated by $(iaI+N)^{2}$.
Classification :
47A35, 47D06, 47D09
Keywords: Cesàro mean; Abel mean; growth order; uniformly continuous operator semi-group and cosine function
Keywords: Cesàro mean; Abel mean; growth order; uniformly continuous operator semi-group and cosine function
@article{CMUC_2010_51_3_a5,
author = {Sato, Ryotaro},
title = {Growth orders of {Ces\`aro} and {Abel} means of uniformly continuous operator semi-groups and cosine functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {441--451},
year = {2010},
volume = {51},
number = {3},
mrnumber = {2741877},
zbl = {1222.47068},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2010_51_3_a5/}
}
TY - JOUR AU - Sato, Ryotaro TI - Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions JO - Commentationes Mathematicae Universitatis Carolinae PY - 2010 SP - 441 EP - 451 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_2010_51_3_a5/ LA - en ID - CMUC_2010_51_3_a5 ER -
%0 Journal Article %A Sato, Ryotaro %T Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions %J Commentationes Mathematicae Universitatis Carolinae %D 2010 %P 441-451 %V 51 %N 3 %U http://geodesic.mathdoc.fr/item/CMUC_2010_51_3_a5/ %G en %F CMUC_2010_51_3_a5
Sato, Ryotaro. Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 3, pp. 441-451. http://geodesic.mathdoc.fr/item/CMUC_2010_51_3_a5/