Martin's Axiom and $\omega$-resolvability of Baire spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 3, pp. 519-540
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove that, assuming MA, every crowded $T_0$ space $X$ is $\omega$-resolvable if it satisfies one of the following properties: (1) it contains a $\pi$-network of cardinality $ \frak{c}$ constituted by infinite sets, (2) $\chi(X) \frak{c}$, (3) $X$ is a $T_2$ Baire space and $c(X) \leq \aleph_0$ and (4) $X$ is a $T_1$ Baire space and has a network $\Cal{N}$ with cardinality $ \frak{c}$ and such that the collection of the finite elements in it constitutes a $\sigma$-locally finite family. Furthermore, we prove that the existence of a $T_1$ Baire irresolvable space is equivalent to the existence of a $T_1$ Baire $\omega$-irresolvable space, and each of these statements is equivalent to the existence of a $T_1$ almost-$\omega$-irresolvable space. Finally, we prove that the minimum cardinality of a $\pi$-network with infinite elements of a space $\operatorname{Seq}(u_t)$ is strictly greater than $\aleph_0$.
We prove that, assuming MA, every crowded $T_0$ space $X$ is $\omega$-resolvable if it satisfies one of the following properties: (1) it contains a $\pi$-network of cardinality $ \frak{c}$ constituted by infinite sets, (2) $\chi(X) \frak{c}$, (3) $X$ is a $T_2$ Baire space and $c(X) \leq \aleph_0$ and (4) $X$ is a $T_1$ Baire space and has a network $\Cal{N}$ with cardinality $ \frak{c}$ and such that the collection of the finite elements in it constitutes a $\sigma$-locally finite family. Furthermore, we prove that the existence of a $T_1$ Baire irresolvable space is equivalent to the existence of a $T_1$ Baire $\omega$-irresolvable space, and each of these statements is equivalent to the existence of a $T_1$ almost-$\omega$-irresolvable space. Finally, we prove that the minimum cardinality of a $\pi$-network with infinite elements of a space $\operatorname{Seq}(u_t)$ is strictly greater than $\aleph_0$.
Classification :
54A10, 54A35, 54D10, 54E52
Keywords: Martin's Axiom; Baire spaces; resolvable spaces; $\omega$-resolvable spaces; almost resolvable spaces; almost-$\omega$-resolvable spaces; infinite $\pi$-network
Keywords: Martin's Axiom; Baire spaces; resolvable spaces; $\omega$-resolvable spaces; almost resolvable spaces; almost-$\omega$-resolvable spaces; infinite $\pi$-network
@article{CMUC_2010_51_3_a13,
author = {Casarrubias-Segura, Fidel and Hern\'andez-Hern\'andez, Fernando and Tamariz-Mascar\'ua, \'Angel},
title = {Martin's {Axiom} and $\omega$-resolvability of {Baire} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {519--540},
year = {2010},
volume = {51},
number = {3},
mrnumber = {2741885},
zbl = {1224.54068},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2010_51_3_a13/}
}
TY - JOUR AU - Casarrubias-Segura, Fidel AU - Hernández-Hernández, Fernando AU - Tamariz-Mascarúa, Ángel TI - Martin's Axiom and $\omega$-resolvability of Baire spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2010 SP - 519 EP - 540 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_2010_51_3_a13/ LA - en ID - CMUC_2010_51_3_a13 ER -
%0 Journal Article %A Casarrubias-Segura, Fidel %A Hernández-Hernández, Fernando %A Tamariz-Mascarúa, Ángel %T Martin's Axiom and $\omega$-resolvability of Baire spaces %J Commentationes Mathematicae Universitatis Carolinae %D 2010 %P 519-540 %V 51 %N 3 %U http://geodesic.mathdoc.fr/item/CMUC_2010_51_3_a13/ %G en %F CMUC_2010_51_3_a13
Casarrubias-Segura, Fidel; Hernández-Hernández, Fernando; Tamariz-Mascarúa, Ángel. Martin's Axiom and $\omega$-resolvability of Baire spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 3, pp. 519-540. http://geodesic.mathdoc.fr/item/CMUC_2010_51_3_a13/