Bicrossproduct Hopf quasigroups
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 287-304
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We recall the notion of Hopf quasigroups introduced previously by the authors. We construct a bicrossproduct Hopf quasigroup $kM {\triangleright\blacktriangleleft} k(G)$ from every group $X$ with a finite subgroup $G\subset X$ and IP quasigroup transversal $M\subset X$ subject to certain conditions. We identify the octonions quasigroup $G_{\mathbb O}$ as transversal in an order 128 group $X$ with subgroup $\mathbb Z_2^3$ and hence obtain a Hopf quasigroup $kG_{\mathbb O}{{>\blacktriangleleft}} k(\mathbb Z_2^3)$ as a particular case of our construction.
We recall the notion of Hopf quasigroups introduced previously by the authors. We construct a bicrossproduct Hopf quasigroup $kM {\triangleright\blacktriangleleft} k(G)$ from every group $X$ with a finite subgroup $G\subset X$ and IP quasigroup transversal $M\subset X$ subject to certain conditions. We identify the octonions quasigroup $G_{\mathbb O}$ as transversal in an order 128 group $X$ with subgroup $\mathbb Z_2^3$ and hence obtain a Hopf quasigroup $kG_{\mathbb O}{{>\blacktriangleleft}} k(\mathbb Z_2^3)$ as a particular case of our construction.
Classification :
16S36, 16W50, 81R50
Keywords: IP loop; octonions; quantum group; quasiHopf algebra; monoidal category; finite group; coset
Keywords: IP loop; octonions; quantum group; quasiHopf algebra; monoidal category; finite group; coset
@article{CMUC_2010_51_2_a13,
author = {Klim, Jennifer and Majid, Shahn},
title = {Bicrossproduct {Hopf} quasigroups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {287--304},
year = {2010},
volume = {51},
number = {2},
mrnumber = {2682482},
zbl = {1224.81014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2010_51_2_a13/}
}
Klim, Jennifer; Majid, Shahn. Bicrossproduct Hopf quasigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 287-304. http://geodesic.mathdoc.fr/item/CMUC_2010_51_2_a13/