Local monotonicity of Hausdorff measures restricted to real analytic curves
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 1, pp. 37-56
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove that the 1-dimensional Hausdorff measure restricted to a simple real analytic curve $\gamma: \mathbb R \to \mathbb R^N$, $N \ge 2$, is locally 1-monotone.
We prove that the 1-dimensional Hausdorff measure restricted to a simple real analytic curve $\gamma: \mathbb R \to \mathbb R^N$, $N \ge 2$, is locally 1-monotone.
@article{CMUC_2010_51_1_a4,
author = {\v{C}ern\'y, Robert},
title = {Local monotonicity of {Hausdorff} measures restricted to real analytic curves},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {37--56},
year = {2010},
volume = {51},
number = {1},
mrnumber = {2666079},
zbl = {1224.53016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2010_51_1_a4/}
}
Černý, Robert. Local monotonicity of Hausdorff measures restricted to real analytic curves. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 1, pp. 37-56. http://geodesic.mathdoc.fr/item/CMUC_2010_51_1_a4/