Trigonometric approximation by Nörlund type means in $L^p$-norm
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 575-589 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that the same degree of approximation as in the theorems proved by L. Leindler [Trigonometric approximation in $L^p$-norm, J. Math. Anal. Appl. 302 (2005), 129--136] and P. Chandra [Trigonometric approximation of functions in $L^p$-norm, J. Math. Anal. Appl. 275 (2002), 13--26] is valid for a more general class of lower triangular matrices. We also prove that these theorems are true under weakened assumptions.
We show that the same degree of approximation as in the theorems proved by L. Leindler [Trigonometric approximation in $L^p$-norm, J. Math. Anal. Appl. 302 (2005), 129--136] and P. Chandra [Trigonometric approximation of functions in $L^p$-norm, J. Math. Anal. Appl. 275 (2002), 13--26] is valid for a more general class of lower triangular matrices. We also prove that these theorems are true under weakened assumptions.
Classification : 41A25, 42A10
Keywords: class $\operatorname{Lip} (\alpha, p)$; $L^p$-norm; trigonometric approximation
@article{CMUC_2009_50_4_a7,
     author = {Szal, Bogdan},
     title = {Trigonometric approximation by {N\"orlund} type means in $L^p$-norm},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {575--589},
     year = {2009},
     volume = {50},
     number = {4},
     mrnumber = {2583135},
     zbl = {1212.42002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009_50_4_a7/}
}
TY  - JOUR
AU  - Szal, Bogdan
TI  - Trigonometric approximation by Nörlund type means in $L^p$-norm
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 575
EP  - 589
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009_50_4_a7/
LA  - en
ID  - CMUC_2009_50_4_a7
ER  - 
%0 Journal Article
%A Szal, Bogdan
%T Trigonometric approximation by Nörlund type means in $L^p$-norm
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 575-589
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_2009_50_4_a7/
%G en
%F CMUC_2009_50_4_a7
Szal, Bogdan. Trigonometric approximation by Nörlund type means in $L^p$-norm. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 575-589. http://geodesic.mathdoc.fr/item/CMUC_2009_50_4_a7/