A note on $G_\delta$ ideals of compact sets
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 569-573 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Solecki has shown that a broad natural class of $G_{\delta}$ ideals of compact sets can be represented through the ideal of nowhere dense subsets of a closed subset of the hyperspace of compact sets. In this note we show that the closed subset in this representation can be taken to be closed upwards.
Solecki has shown that a broad natural class of $G_{\delta}$ ideals of compact sets can be represented through the ideal of nowhere dense subsets of a closed subset of the hyperspace of compact sets. In this note we show that the closed subset in this representation can be taken to be closed upwards.
Classification : 03E15, 28A05, 54H05
Keywords: descriptive set theory; ideals of compact sets
@article{CMUC_2009_50_4_a6,
     author = {Saran, Maya},
     title = {A note on $G_\delta$ ideals of compact sets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {569--573},
     year = {2009},
     volume = {50},
     number = {4},
     mrnumber = {2583134},
     zbl = {1212.03031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009_50_4_a6/}
}
TY  - JOUR
AU  - Saran, Maya
TI  - A note on $G_\delta$ ideals of compact sets
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 569
EP  - 573
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009_50_4_a6/
LA  - en
ID  - CMUC_2009_50_4_a6
ER  - 
%0 Journal Article
%A Saran, Maya
%T A note on $G_\delta$ ideals of compact sets
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 569-573
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_2009_50_4_a6/
%G en
%F CMUC_2009_50_4_a6
Saran, Maya. A note on $G_\delta$ ideals of compact sets. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 569-573. http://geodesic.mathdoc.fr/item/CMUC_2009_50_4_a6/